Cargando…
DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells
Vaccinia-related kinase (VRK) 1 is a serin/threonine kinase that plays an important role in DNA damage response (DDR), phosphorylating some proteins involved in this process such as 53BP1, NBS1 or H2AX, and in the cell cycle progression. In addition, VRK1 is overexpressed in many cancer types and it...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156982/ https://www.ncbi.nlm.nih.gov/pubmed/34067799 http://dx.doi.org/10.3390/ph14050473 |
_version_ | 1783699576787566592 |
---|---|
author | Carrión-Marchante, Rebeca Frezza, Valerio Salgado-Figueroa, Ana Pérez-Morgado, M. Isabel Martín, M. Elena González, Víctor M. |
author_facet | Carrión-Marchante, Rebeca Frezza, Valerio Salgado-Figueroa, Ana Pérez-Morgado, M. Isabel Martín, M. Elena González, Víctor M. |
author_sort | Carrión-Marchante, Rebeca |
collection | PubMed |
description | Vaccinia-related kinase (VRK) 1 is a serin/threonine kinase that plays an important role in DNA damage response (DDR), phosphorylating some proteins involved in this process such as 53BP1, NBS1 or H2AX, and in the cell cycle progression. In addition, VRK1 is overexpressed in many cancer types and its correlation with poor prognosis has been determined, showing VRK1 as a new therapeutic target in oncology. Using in vitro selection, high-affinity DNA aptamers to VRK1 were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Three aptamers were selected and characterized. These aptamers recognized the protein kinase VRK1 with an affinity in the nanomolar range and showed a high sensibility. Moreover, the treatment of the MCF7 breast cell line with these aptamers resulted in a decrease in cyclin D1 levels, and an inhibition of cell cycle progression by G1 phase arrest, which induced apoptosis in cells. These results suggest that these aptamers are specific inhibitors of VRK1 that might be developed as potential drugs for the treatment of cancer. |
format | Online Article Text |
id | pubmed-8156982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81569822021-05-28 DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells Carrión-Marchante, Rebeca Frezza, Valerio Salgado-Figueroa, Ana Pérez-Morgado, M. Isabel Martín, M. Elena González, Víctor M. Pharmaceuticals (Basel) Article Vaccinia-related kinase (VRK) 1 is a serin/threonine kinase that plays an important role in DNA damage response (DDR), phosphorylating some proteins involved in this process such as 53BP1, NBS1 or H2AX, and in the cell cycle progression. In addition, VRK1 is overexpressed in many cancer types and its correlation with poor prognosis has been determined, showing VRK1 as a new therapeutic target in oncology. Using in vitro selection, high-affinity DNA aptamers to VRK1 were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Three aptamers were selected and characterized. These aptamers recognized the protein kinase VRK1 with an affinity in the nanomolar range and showed a high sensibility. Moreover, the treatment of the MCF7 breast cell line with these aptamers resulted in a decrease in cyclin D1 levels, and an inhibition of cell cycle progression by G1 phase arrest, which induced apoptosis in cells. These results suggest that these aptamers are specific inhibitors of VRK1 that might be developed as potential drugs for the treatment of cancer. MDPI 2021-05-17 /pmc/articles/PMC8156982/ /pubmed/34067799 http://dx.doi.org/10.3390/ph14050473 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Carrión-Marchante, Rebeca Frezza, Valerio Salgado-Figueroa, Ana Pérez-Morgado, M. Isabel Martín, M. Elena González, Víctor M. DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells |
title | DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells |
title_full | DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells |
title_fullStr | DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells |
title_full_unstemmed | DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells |
title_short | DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells |
title_sort | dna aptamers against vaccinia-related kinase (vrk) 1 block proliferation in mcf7 breast cancer cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156982/ https://www.ncbi.nlm.nih.gov/pubmed/34067799 http://dx.doi.org/10.3390/ph14050473 |
work_keys_str_mv | AT carrionmarchanterebeca dnaaptamersagainstvacciniarelatedkinasevrk1blockproliferationinmcf7breastcancercells AT frezzavalerio dnaaptamersagainstvacciniarelatedkinasevrk1blockproliferationinmcf7breastcancercells AT salgadofigueroaana dnaaptamersagainstvacciniarelatedkinasevrk1blockproliferationinmcf7breastcancercells AT perezmorgadomisabel dnaaptamersagainstvacciniarelatedkinasevrk1blockproliferationinmcf7breastcancercells AT martinmelena dnaaptamersagainstvacciniarelatedkinasevrk1blockproliferationinmcf7breastcancercells AT gonzalezvictorm dnaaptamersagainstvacciniarelatedkinasevrk1blockproliferationinmcf7breastcancercells |