Cargando…

Ultra-small cobalt nanoparticles from molecularly-defined Co–salen complexes for catalytic synthesis of amines

We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt–salen complexes such as cobalt(ii)–N,N′-bis(salicylidene)-1,2-phenylenediamine...

Descripción completa

Detalles Bibliográficos
Autores principales: Senthamarai, Thirusangumurugan, Chandrashekhar, Vishwas G., Gawande, Manoj B., Kalevaru, Narayana V., Zbořil, Radek, Kamer, Paul C. J., Jagadeesh, Rajenahally V., Beller, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157512/
https://www.ncbi.nlm.nih.gov/pubmed/34122798
http://dx.doi.org/10.1039/c9sc04963k
Descripción
Sumario:We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt–salen complexes such as cobalt(ii)–N,N′-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2–4 nm) cobalt-nanoparticles embedded in a carbon–nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.