Cargando…

TET2 and DNMT3A mutations and exceptional response to 4′-thio-2′-deoxycytidine in human solid tumor models

BACKGROUND: Challenges remain on the selection of patients who potentially respond to a class of drugs that target epigenetics for cancer treatment. This study aims to investigate TET2/DNMT3A mutations and antitumor activity of a novel epigenetic agent in multiple human cancer cell lines and animal...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Sherry X., Hollingshead, Melinda, Rubinstein, Larry, Nguyen, Dat, Larenjeira, Angelo B. A., Kinders, Robert J., Difilippantonio, Michael, Doroshow, James H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157655/
https://www.ncbi.nlm.nih.gov/pubmed/34039392
http://dx.doi.org/10.1186/s13045-021-01091-5
Descripción
Sumario:BACKGROUND: Challenges remain on the selection of patients who potentially respond to a class of drugs that target epigenetics for cancer treatment. This study aims to investigate TET2/DNMT3A mutations and antitumor activity of a novel epigenetic agent in multiple human cancer cell lines and animal models. METHODS: Seventeen cancer cell lines and multiple xenograft models bearing representative human solid tumors were subjected to 4′-thio-2′-deoxycytidine (T-dCyd) or control treatment. Gene mutations in cell lines were examined by whole exome and/or Sanger sequencing. Specific gene expression was measured in cells and xenograft tumor samples by Western blotting and immunohistochemistry. TET2/DNMT3A mutation status in 47,571 human tumor samples was analyzed at cBioPortal for Cancer Genomics. RESULTS: Cell survival was significantly inhibited by T-dCyd in breast BT549, lung NCI-H23, melanoma SKMEL5 and renal ACHN cancer lines harboring deleterious TET2 and nonsynonymous DNMT3A mutations compared to 13 lines without such mutation pattern (P = 0.007). The treatment upregulated p21 and induced cell cycle arrest in NCI-H23 cells, and dramatically inhibited their xenograft tumor growth versus wildtype models. T-dCyd administrations led to a significant p21 increase and near eradication of tumor cells in the double-mutant xenografts by histological evaluation. TET2/DNMT3A was co-mutated in human lung, breast, skin and kidney cancers and frequently in angioimmunoblastic and peripheral T cell lymphomas and several types of leukemia. CONCLUSIONS: Cell and animal models with concurrent mutations in TET2 and DNMT3A were sensitive to T-dCyd treatment. The mutations were detectable in human solid tumors and frequently occur in some hematological malignancies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13045-021-01091-5.