Cargando…

Parental Educational Attainment, the Superior Temporal Cortical Surface Area, and Reading Ability among American Children: A Test of Marginalization-Related Diminished Returns

Background: Recent studies have shown that parental educational attainment is associated with a larger superior temporal cortical surface area associated with higher reading ability in children. Simultaneously, the marginalization-related diminished returns (MDRs) framework suggests that, due to str...

Descripción completa

Detalles Bibliográficos
Autores principales: Assari, Shervin, Boyce, Shanika, Bazargan, Mohsen, Thomas, Alvin, Cobb, Ryon J., Hudson, Darrell, Curry, Tommy J., Nicholson, Harvey L., Cuevas, Adolfo G., Mistry, Ritesh, Chavous, Tabbye M., Caldwell, Cleopatra H., Zimmerman, Marc A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158386/
https://www.ncbi.nlm.nih.gov/pubmed/34070118
http://dx.doi.org/10.3390/children8050412
Descripción
Sumario:Background: Recent studies have shown that parental educational attainment is associated with a larger superior temporal cortical surface area associated with higher reading ability in children. Simultaneously, the marginalization-related diminished returns (MDRs) framework suggests that, due to structural racism and social stratification, returns of parental education are smaller for black and other racial/ethnic minority children compared to their white counterparts. Purpose: This study used a large national sample of 9–10-year-old American children to investigate associations between parental educational attainment, the right and left superior temporal cortical surface area, and reading ability across diverse racial/ethnic groups. Methods: This was a cross-sectional analysis that included 10,817 9–10-year-old children from the Adolescent Brain Cognitive Development (ABCD) study. Parental educational attainment was treated as a five-level categorical variable. Children’s right and left superior temporal cortical surface area and reading ability were continuous variables. Race/ethnicity was the moderator. To adjust for the nested nature of the ABCD data, mixed-effects regression models were used to test the associations between parental education, superior temporal cortical surface area, and reading ability overall and by race/ethnicity. Results: Overall, high parental educational attainment was associated with greater superior temporal cortical surface area and reading ability in children. In the pooled sample, we found statistically significant interactions between race/ethnicity and parental educational attainment on children’s right and left superior temporal cortical surface area, suggesting that high parental educational attainment has a smaller boosting effect on children’s superior temporal cortical surface area for black than white children. We also found a significant interaction between race and the left superior temporal surface area on reading ability, indicating weaker associations for Alaskan Natives, Native Hawaiians, and Pacific Islanders (AIAN/NHPI) than white children. We also found interactions between race and parental educational attainment on reading ability, indicating more potent effects for black children than white children. Conclusion: While parental educational attainment may improve children’s superior temporal cortical surface area, promoting reading ability, this effect may be unequal across racial/ethnic groups. To minimize the racial/ethnic gap in children’s brain development and school achievement, we need to address societal barriers that diminish parental educational attainment’s marginal returns for middle-class minority families. Social and public policies need to go beyond equal access and address structural and societal barriers that hinder middle-class families of color and their children. Future research should test how racism, social stratification, segregation, and discrimination, which shape the daily lives of non-white individuals, take a toll on children’s brains and academic development.