Cargando…
Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid
Enantioselective additions to oxocarbenium ions are high-value synthetic transformations but have proven challenging to achieve. In particular, the oxa-Pictet–Spengler reaction has only recently been rendered enantioselective. We report experimental and computational studies on the mechanism of this...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163393/ https://www.ncbi.nlm.nih.gov/pubmed/34123127 http://dx.doi.org/10.1039/d0sc03250f |
_version_ | 1783700904366571520 |
---|---|
author | Maskeri, Mark A. Brueckner, Alexander C. Feoktistova, Taisiia O'Connor, Matthew J. Walden, Daniel M. Cheong, Paul Ha-Yeon Scheidt, Karl A. |
author_facet | Maskeri, Mark A. Brueckner, Alexander C. Feoktistova, Taisiia O'Connor, Matthew J. Walden, Daniel M. Cheong, Paul Ha-Yeon Scheidt, Karl A. |
author_sort | Maskeri, Mark A. |
collection | PubMed |
description | Enantioselective additions to oxocarbenium ions are high-value synthetic transformations but have proven challenging to achieve. In particular, the oxa-Pictet–Spengler reaction has only recently been rendered enantioselective. We report experimental and computational studies on the mechanism of this unusual transformation. Herein we reveal that this reaction is hypothesized to proceed through a self-assembled ternary hydrogen bonding complex involving the substrate, chiral phosphate ion, and a urea hydrogen-bond donor. The computed transition state reveals C2-symmetric grooves in the chiral phosphate that are occupied by the urea and substrate. Occupation of one of these grooves by the urea co-catalyst tunes the available reactive volume and enhances the stereoselectivity of the chiral phosphate catalyst. |
format | Online Article Text |
id | pubmed-8163393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81633932021-06-11 Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid Maskeri, Mark A. Brueckner, Alexander C. Feoktistova, Taisiia O'Connor, Matthew J. Walden, Daniel M. Cheong, Paul Ha-Yeon Scheidt, Karl A. Chem Sci Chemistry Enantioselective additions to oxocarbenium ions are high-value synthetic transformations but have proven challenging to achieve. In particular, the oxa-Pictet–Spengler reaction has only recently been rendered enantioselective. We report experimental and computational studies on the mechanism of this unusual transformation. Herein we reveal that this reaction is hypothesized to proceed through a self-assembled ternary hydrogen bonding complex involving the substrate, chiral phosphate ion, and a urea hydrogen-bond donor. The computed transition state reveals C2-symmetric grooves in the chiral phosphate that are occupied by the urea and substrate. Occupation of one of these grooves by the urea co-catalyst tunes the available reactive volume and enhances the stereoselectivity of the chiral phosphate catalyst. The Royal Society of Chemistry 2020-07-27 /pmc/articles/PMC8163393/ /pubmed/34123127 http://dx.doi.org/10.1039/d0sc03250f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Maskeri, Mark A. Brueckner, Alexander C. Feoktistova, Taisiia O'Connor, Matthew J. Walden, Daniel M. Cheong, Paul Ha-Yeon Scheidt, Karl A. Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid |
title | Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid |
title_full | Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid |
title_fullStr | Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid |
title_full_unstemmed | Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid |
title_short | Mechanism and origins of selectivity in the enantioselective oxa-Pictet–Spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid |
title_sort | mechanism and origins of selectivity in the enantioselective oxa-pictet–spengler reaction: a cooperative catalytic complex from a hydrogen bond donor and chiral phosphoric acid |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163393/ https://www.ncbi.nlm.nih.gov/pubmed/34123127 http://dx.doi.org/10.1039/d0sc03250f |
work_keys_str_mv | AT maskerimarka mechanismandoriginsofselectivityintheenantioselectiveoxapictetspenglerreactionacooperativecatalyticcomplexfromahydrogenbonddonorandchiralphosphoricacid AT brueckneralexanderc mechanismandoriginsofselectivityintheenantioselectiveoxapictetspenglerreactionacooperativecatalyticcomplexfromahydrogenbonddonorandchiralphosphoricacid AT feoktistovataisiia mechanismandoriginsofselectivityintheenantioselectiveoxapictetspenglerreactionacooperativecatalyticcomplexfromahydrogenbonddonorandchiralphosphoricacid AT oconnormatthewj mechanismandoriginsofselectivityintheenantioselectiveoxapictetspenglerreactionacooperativecatalyticcomplexfromahydrogenbonddonorandchiralphosphoricacid AT waldendanielm mechanismandoriginsofselectivityintheenantioselectiveoxapictetspenglerreactionacooperativecatalyticcomplexfromahydrogenbonddonorandchiralphosphoricacid AT cheongpaulhayeon mechanismandoriginsofselectivityintheenantioselectiveoxapictetspenglerreactionacooperativecatalyticcomplexfromahydrogenbonddonorandchiralphosphoricacid AT scheidtkarla mechanismandoriginsofselectivityintheenantioselectiveoxapictetspenglerreactionacooperativecatalyticcomplexfromahydrogenbonddonorandchiralphosphoricacid |