Cargando…
An optimized protocol for isolation of S-nitrosylated proteins from C. elegans
Post-translational modification by S-nitrosylation regulates numerous cellular functions and impacts most proteins across phylogeny. We describe a protocol for isolating S-nitrosylated proteins (SNO-proteins) from C. elegans, suitable for assessing SNO levels of individual proteins and of the global...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164088/ https://www.ncbi.nlm.nih.gov/pubmed/34095861 http://dx.doi.org/10.1016/j.xpro.2021.100547 |
Sumario: | Post-translational modification by S-nitrosylation regulates numerous cellular functions and impacts most proteins across phylogeny. We describe a protocol for isolating S-nitrosylated proteins (SNO-proteins) from C. elegans, suitable for assessing SNO levels of individual proteins and of the global proteome. This protocol features efficient nematode lysis and SNO capture, while protection of SNO proteins from degradation is the major challenge. This protocol can be adapted to mammalian tissues. For complete information on the generation and use of this protocol, please refer to Seth et al. (2019). |
---|