Cargando…
Food packaging wastes amid the COVID-19 pandemic: Trends and challenges
BACKGROUND: The COVID-19 crisis generated changes in consumer behavior related to food purchase and the management of food packaging. Due to the intensification of online purchases for home delivery, there has been an increase in the use of food packaging (mostly non-biodegradable or non-renewable)....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166460/ https://www.ncbi.nlm.nih.gov/pubmed/34092920 http://dx.doi.org/10.1016/j.tifs.2021.05.027 |
Sumario: | BACKGROUND: The COVID-19 crisis generated changes in consumer behavior related to food purchase and the management of food packaging. Due to the intensification of online purchases for home delivery, there has been an increase in the use of food packaging (mostly non-biodegradable or non-renewable). Moreover, the fear of contamination with SARS-CoV-2 through contact with materials and surfaces has led to an intensified disposal of food packaging, promoting a setback in waste management. SCOPE AND APPROACH: The purpose of this short commentary is to address the impacts of increased use and disposal of food packaging during the COVID-19 pandemic. Technological solutions have been presented as tools to minimize the environmental impacts of the increased volume of disposed food packaging (namely, the development of biodegradable food packaging) as well as to minimize the occurrence of cross-contamination (namely, the incorporation of active antiviral components). KEY FINDINGS AND CONCLUSIONS: The consumer behavior in the COVID-19 pandemic requires actions concerning adoption of bioplastics for single-use food packaging. Polylactide (PLA) stands out for high production viability, performance comparable to those of petroleum-based thermoplastics, and carbon neutral life cycle. Moreover, active components including organic compounds (resveratrol, luteolin, myricetin etc.) and metals (e.g., copper, zinc, silver) can mitigate cross-contamination. Therefore, there are opportunities to reduce food packaging-related environmental footprints while also decreasing the occurrence of surface-mediated cross-contamination. |
---|