Cargando…

A thin-film temperature sensor based on a flexible electrode and substrate

Accurate temperature measurements can efficiently solve numerous critical problems and provide key information. Herein, a flexible micro-three-dimensional sensor, with a combination of platinum and indium oxide to form thermocouples, is designed and fabricated by a microfabrication process to achiev...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhaojun, Tian, Bian, Zhang, Bingfei, Liu, Jiangjiang, Zhang, Zhongkai, Wang, Song, Luo, Yunyun, Zhao, Libo, Shi, Peng, Lin, Qijing, Jiang, Zhuangde
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166532/
https://www.ncbi.nlm.nih.gov/pubmed/34094587
http://dx.doi.org/10.1038/s41378-021-00271-0
Descripción
Sumario:Accurate temperature measurements can efficiently solve numerous critical problems and provide key information. Herein, a flexible micro-three-dimensional sensor, with a combination of platinum and indium oxide to form thermocouples, is designed and fabricated by a microfabrication process to achieve in situ real-time temperature measurements. The stability and reliability of the sensor are greatly improved by optimizing the process parameters, structural design, and preparation methods. A novel micro-three-dimensional structure with better malleability is designed, which also takes advantage of the fast response of a two-dimensional thin film. The as-obtained flexible temperature sensor with excellent stability and reliability is expected to greatly contribute to the development of essential components in various emerging research fields, including bio-robot and healthcare systems. The model of the application sensor in a mask is further proposed and designed to realize the collection of health information, reducing the number of deaths caused by the lack of timely detection and treatment of patients.