Cargando…
Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits
Nearly all clinical isolates of Salmonella Typhi, the cause of typhoid fever, are antibiotic resistant. All S. Typhi isolates secrete an A(2)B(5) exotoxin called typhoid toxin to benefit the pathogen during infection. Here, we demonstrate that antibiotic-resistant S. Typhi secretes typhoid toxin con...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169802/ https://www.ncbi.nlm.nih.gov/pubmed/34113815 http://dx.doi.org/10.1016/j.isci.2021.102454 |
_version_ | 1783702103718363136 |
---|---|
author | Ahn, Changhwan Yang, Yi-An Neupane, Durga P. Nguyen, Tri Richards, Angelene F. Sim, Ji Hyun Mantis, Nicholas J. Song, Jeongmin |
author_facet | Ahn, Changhwan Yang, Yi-An Neupane, Durga P. Nguyen, Tri Richards, Angelene F. Sim, Ji Hyun Mantis, Nicholas J. Song, Jeongmin |
author_sort | Ahn, Changhwan |
collection | PubMed |
description | Nearly all clinical isolates of Salmonella Typhi, the cause of typhoid fever, are antibiotic resistant. All S. Typhi isolates secrete an A(2)B(5) exotoxin called typhoid toxin to benefit the pathogen during infection. Here, we demonstrate that antibiotic-resistant S. Typhi secretes typhoid toxin continuously during infection regardless of antibiotic treatment. We characterize typhoid toxin antibodies targeting glycan-receptor-binding PltB or nuclease CdtB, which neutralize typhoid toxin in vitro and in vivo, as demonstrated by using typhoid toxin secreted by antibiotic-resistant S. Typhi during human cell infection and lethal dose typhoid toxin challenge to mice. TyTx11 generated in this study neutralizes typhoid toxin effectively, comparable to TyTx4 that binds to all PltB subunits available per holotoxin. Cryoelectron microscopy explains that the binding of TyTx11 to CdtB makes this subunit inactive through CdtB catalytic-site conformational change. The identified toxin-neutralizing epitopes are conserved across all S. Typhi clinical isolates, offering critical insights into typhoid toxin-neutralizing strategies. |
format | Online Article Text |
id | pubmed-8169802 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-81698022021-06-09 Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits Ahn, Changhwan Yang, Yi-An Neupane, Durga P. Nguyen, Tri Richards, Angelene F. Sim, Ji Hyun Mantis, Nicholas J. Song, Jeongmin iScience Article Nearly all clinical isolates of Salmonella Typhi, the cause of typhoid fever, are antibiotic resistant. All S. Typhi isolates secrete an A(2)B(5) exotoxin called typhoid toxin to benefit the pathogen during infection. Here, we demonstrate that antibiotic-resistant S. Typhi secretes typhoid toxin continuously during infection regardless of antibiotic treatment. We characterize typhoid toxin antibodies targeting glycan-receptor-binding PltB or nuclease CdtB, which neutralize typhoid toxin in vitro and in vivo, as demonstrated by using typhoid toxin secreted by antibiotic-resistant S. Typhi during human cell infection and lethal dose typhoid toxin challenge to mice. TyTx11 generated in this study neutralizes typhoid toxin effectively, comparable to TyTx4 that binds to all PltB subunits available per holotoxin. Cryoelectron microscopy explains that the binding of TyTx11 to CdtB makes this subunit inactive through CdtB catalytic-site conformational change. The identified toxin-neutralizing epitopes are conserved across all S. Typhi clinical isolates, offering critical insights into typhoid toxin-neutralizing strategies. Elsevier 2021-04-20 /pmc/articles/PMC8169802/ /pubmed/34113815 http://dx.doi.org/10.1016/j.isci.2021.102454 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Ahn, Changhwan Yang, Yi-An Neupane, Durga P. Nguyen, Tri Richards, Angelene F. Sim, Ji Hyun Mantis, Nicholas J. Song, Jeongmin Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits |
title | Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits |
title_full | Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits |
title_fullStr | Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits |
title_full_unstemmed | Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits |
title_short | Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits |
title_sort | mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169802/ https://www.ncbi.nlm.nih.gov/pubmed/34113815 http://dx.doi.org/10.1016/j.isci.2021.102454 |
work_keys_str_mv | AT ahnchanghwan mechanismsoftyphoidtoxinneutralizationbyantibodiestargetingglycanreceptorbindingandnucleasesubunits AT yangyian mechanismsoftyphoidtoxinneutralizationbyantibodiestargetingglycanreceptorbindingandnucleasesubunits AT neupanedurgap mechanismsoftyphoidtoxinneutralizationbyantibodiestargetingglycanreceptorbindingandnucleasesubunits AT nguyentri mechanismsoftyphoidtoxinneutralizationbyantibodiestargetingglycanreceptorbindingandnucleasesubunits AT richardsangelenef mechanismsoftyphoidtoxinneutralizationbyantibodiestargetingglycanreceptorbindingandnucleasesubunits AT simjihyun mechanismsoftyphoidtoxinneutralizationbyantibodiestargetingglycanreceptorbindingandnucleasesubunits AT mantisnicholasj mechanismsoftyphoidtoxinneutralizationbyantibodiestargetingglycanreceptorbindingandnucleasesubunits AT songjeongmin mechanismsoftyphoidtoxinneutralizationbyantibodiestargetingglycanreceptorbindingandnucleasesubunits |