Cargando…

Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis

BACKGROUND: Let-7a is a small non-coding RNA that has been found to take part in cell proliferation and apoptosis. The hippo-YAP1 axis, known as a tumour suppressor pathway, also plays an important role in cell proliferation and apoptosis. YAP1, TAZ, and phospho-YAP1 play key roles in actions of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Jun-Hua, Duan, Hua, Wang, Sha, Wang, Yi-Yi, LV, Cheng-Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173847/
https://www.ncbi.nlm.nih.gov/pubmed/34082774
http://dx.doi.org/10.1186/s12958-021-00753-w
_version_ 1783702790430785536
author Huang, Jun-Hua
Duan, Hua
Wang, Sha
Wang, Yi-Yi
LV, Cheng-Xiao
author_facet Huang, Jun-Hua
Duan, Hua
Wang, Sha
Wang, Yi-Yi
LV, Cheng-Xiao
author_sort Huang, Jun-Hua
collection PubMed
description BACKGROUND: Let-7a is a small non-coding RNA that has been found to take part in cell proliferation and apoptosis. The hippo-YAP1 axis, known as a tumour suppressor pathway, also plays an important role in cell proliferation and apoptosis. YAP1, TAZ, and phospho-YAP1 play key roles in actions of the hippo-YAP1 axis. Adenomyosis (ADS) is a proliferative disease leading to a large uterus in patients with prolonged illness. Abnormal proliferation of smooth muscle cells (SMCs) in the uterine endometrial-myometrial junctional zone (JZ) is an important reason for developing ADS. This study aimed to explore the expression levels of let-7a and components of the hippo-YAP1 axis in SMCs in the uterine endometrial-myometrial JZ in ADS and to explore the roles of let-7a and the hippo-YAP1 axis of JZ SMC proliferation and apoptosis in ADS. METHODS: We collected JZ tissues for the primary culture of SMCs from 25 women diagnosed with ADS and 27 women without ADS. We used quantitative real-time polymerase chain reaction and western blotting to measure the mRNA and protein expression levels of let-7a, YAP1, TAZ, and phospho-YAP1 in ADS JZ SMCs. A CCK-8 assay and flow cytometry analysis of apoptosis were utilized to test the proliferation and apoptosis of JZ SMCs. The let-7a overexpression lentiviral vector GV280 was used to increase the expression level of let-7a. We added verteporfin to block the phosphorylation of components of the hippo-YAP1 axis. RESULTS: We found that the let-7a level was decreased, while the YAP1 and TAZ levels were increased in ADS JZ SMCs. Upregulated let-7a affected the expression levels of components of the hippo-YAP1 axis, accelerated apoptosis, and inhibited proliferation in JZ SMCs. Furthermore, accumulated YAP1 led to increasing proliferation of JZ SMCs after verteporfin treatment to block the phosphorylation of components of the hippo-YAP1 axis. If components of the hippo-YAP1 axis were unphosphorylated, upregulated let-7a could not inhibit the proliferation of ADS JZ SMCs. Upregulated let-7a could not activate the hippo-YAP1 axis in verteporfin treatment. CONCLUSIONS: Our findings suggest that the let-7a and hippo-YAP1 axis may act as important regulators of JZ SMCs proliferation, and upregulated let-7a may be an effective method to treat ADS.
format Online
Article
Text
id pubmed-8173847
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-81738472021-06-03 Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis Huang, Jun-Hua Duan, Hua Wang, Sha Wang, Yi-Yi LV, Cheng-Xiao Reprod Biol Endocrinol Research BACKGROUND: Let-7a is a small non-coding RNA that has been found to take part in cell proliferation and apoptosis. The hippo-YAP1 axis, known as a tumour suppressor pathway, also plays an important role in cell proliferation and apoptosis. YAP1, TAZ, and phospho-YAP1 play key roles in actions of the hippo-YAP1 axis. Adenomyosis (ADS) is a proliferative disease leading to a large uterus in patients with prolonged illness. Abnormal proliferation of smooth muscle cells (SMCs) in the uterine endometrial-myometrial junctional zone (JZ) is an important reason for developing ADS. This study aimed to explore the expression levels of let-7a and components of the hippo-YAP1 axis in SMCs in the uterine endometrial-myometrial JZ in ADS and to explore the roles of let-7a and the hippo-YAP1 axis of JZ SMC proliferation and apoptosis in ADS. METHODS: We collected JZ tissues for the primary culture of SMCs from 25 women diagnosed with ADS and 27 women without ADS. We used quantitative real-time polymerase chain reaction and western blotting to measure the mRNA and protein expression levels of let-7a, YAP1, TAZ, and phospho-YAP1 in ADS JZ SMCs. A CCK-8 assay and flow cytometry analysis of apoptosis were utilized to test the proliferation and apoptosis of JZ SMCs. The let-7a overexpression lentiviral vector GV280 was used to increase the expression level of let-7a. We added verteporfin to block the phosphorylation of components of the hippo-YAP1 axis. RESULTS: We found that the let-7a level was decreased, while the YAP1 and TAZ levels were increased in ADS JZ SMCs. Upregulated let-7a affected the expression levels of components of the hippo-YAP1 axis, accelerated apoptosis, and inhibited proliferation in JZ SMCs. Furthermore, accumulated YAP1 led to increasing proliferation of JZ SMCs after verteporfin treatment to block the phosphorylation of components of the hippo-YAP1 axis. If components of the hippo-YAP1 axis were unphosphorylated, upregulated let-7a could not inhibit the proliferation of ADS JZ SMCs. Upregulated let-7a could not activate the hippo-YAP1 axis in verteporfin treatment. CONCLUSIONS: Our findings suggest that the let-7a and hippo-YAP1 axis may act as important regulators of JZ SMCs proliferation, and upregulated let-7a may be an effective method to treat ADS. BioMed Central 2021-06-03 /pmc/articles/PMC8173847/ /pubmed/34082774 http://dx.doi.org/10.1186/s12958-021-00753-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Huang, Jun-Hua
Duan, Hua
Wang, Sha
Wang, Yi-Yi
LV, Cheng-Xiao
Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis
title Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis
title_full Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis
title_fullStr Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis
title_full_unstemmed Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis
title_short Upregulated microRNA let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-YAP1 axis
title_sort upregulated microrna let-7a accelerates apoptosis and inhibits proliferation in uterine junctional zone smooth muscle cells in adenomyosis under conditions of a normal activated hippo-yap1 axis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173847/
https://www.ncbi.nlm.nih.gov/pubmed/34082774
http://dx.doi.org/10.1186/s12958-021-00753-w
work_keys_str_mv AT huangjunhua upregulatedmicrornalet7aacceleratesapoptosisandinhibitsproliferationinuterinejunctionalzonesmoothmusclecellsinadenomyosisunderconditionsofanormalactivatedhippoyap1axis
AT duanhua upregulatedmicrornalet7aacceleratesapoptosisandinhibitsproliferationinuterinejunctionalzonesmoothmusclecellsinadenomyosisunderconditionsofanormalactivatedhippoyap1axis
AT wangsha upregulatedmicrornalet7aacceleratesapoptosisandinhibitsproliferationinuterinejunctionalzonesmoothmusclecellsinadenomyosisunderconditionsofanormalactivatedhippoyap1axis
AT wangyiyi upregulatedmicrornalet7aacceleratesapoptosisandinhibitsproliferationinuterinejunctionalzonesmoothmusclecellsinadenomyosisunderconditionsofanormalactivatedhippoyap1axis
AT lvchengxiao upregulatedmicrornalet7aacceleratesapoptosisandinhibitsproliferationinuterinejunctionalzonesmoothmusclecellsinadenomyosisunderconditionsofanormalactivatedhippoyap1axis