Cargando…

Cytoplasmic Mislocalization of RNA Polymerase II Subunit RPB1 in Alzheimer Disease Is Linked to Pathologic Tau

Abnormal protein accumulation and mislocalization is a general hallmark of Alzheimer disease. Recent data suggest nucleocytoplasmic transport may be compromised by tau in Alzheimer disease. In this context, we have examined the RNA polymerase II subunit RPB1, which is the catalytic subunit that play...

Descripción completa

Detalles Bibliográficos
Autores principales: Dickson, John R, Yoon, Hyejin, Frosch, Matthew P, Hyman, Bradley T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177848/
https://www.ncbi.nlm.nih.gov/pubmed/33990839
http://dx.doi.org/10.1093/jnen/nlab040
Descripción
Sumario:Abnormal protein accumulation and mislocalization is a general hallmark of Alzheimer disease. Recent data suggest nucleocytoplasmic transport may be compromised by tau in Alzheimer disease. In this context, we have examined the RNA polymerase II subunit RPB1, which is the catalytic subunit that plays a critical role in transcription. Using immunofluorescence staining in control and Alzheimer disease hippocampal tissue, we show that 2 phosphoisoforms of RPB1 mislocalize from the nucleus to the cytoplasm of neurons in Alzheimer disease. The number of neurons with this cytoplasmic mislocalization is correlated with the burden of pathologic tau (AT8-immunopositive neurons). In order to test whether there is a causal relationship between pathologic tau and cytoplasmic RPB1 accumulation, we used the rTg4510 mouse model, which expresses a regulatable pathologic human tau species harboring the P301L mutation. Using immunofluorescence staining on brain tissue from young (2.5-month-old) and aged (8.5- to 10-month-old) rTg4510 mice, we found a tau- and age-dependent increase in cytoplasmic mislocalization of Rpb1. In summary, this study provides evidence that tau induces mislocalization of RPB1 in Alzheimer disease, and since RPB1 is essential for transcription, this raises the possibility that RPB1 mislocalization could lead to fundamental alterations in neuronal health.