Cargando…

Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell

We report on the combination of nanodroplet sample preparation, ultra-low-flow nanoLC, high-field asymmetric ion mobility spectrometry (FAIMS), and the latest-generation Orbitrap Eclipse Tribrid mass spectrometer for greatly improved single-cell proteome profiling. FAIMS effectively filtered out sin...

Descripción completa

Detalles Bibliográficos
Autores principales: Cong, Yongzheng, Motamedchaboki, Khatereh, Misal, Santosh A., Liang, Yiran, Guise, Amanda J., Truong, Thy, Huguet, Romain, Plowey, Edward D., Zhu, Ying, Lopez-Ferrer, Daniel, Kelly, Ryan T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178986/
https://www.ncbi.nlm.nih.gov/pubmed/34163866
http://dx.doi.org/10.1039/d0sc03636f
_version_ 1783703687179272192
author Cong, Yongzheng
Motamedchaboki, Khatereh
Misal, Santosh A.
Liang, Yiran
Guise, Amanda J.
Truong, Thy
Huguet, Romain
Plowey, Edward D.
Zhu, Ying
Lopez-Ferrer, Daniel
Kelly, Ryan T.
author_facet Cong, Yongzheng
Motamedchaboki, Khatereh
Misal, Santosh A.
Liang, Yiran
Guise, Amanda J.
Truong, Thy
Huguet, Romain
Plowey, Edward D.
Zhu, Ying
Lopez-Ferrer, Daniel
Kelly, Ryan T.
author_sort Cong, Yongzheng
collection PubMed
description We report on the combination of nanodroplet sample preparation, ultra-low-flow nanoLC, high-field asymmetric ion mobility spectrometry (FAIMS), and the latest-generation Orbitrap Eclipse Tribrid mass spectrometer for greatly improved single-cell proteome profiling. FAIMS effectively filtered out singly charged ions for more effective MS analysis of multiply charged peptides, resulting in an average of 1056 protein groups identified from single HeLa cells without MS1-level feature matching. This is 2.3 times more identifications than without FAIMS and a far greater level of proteome coverage for single mammalian cells than has been previously reported for a label-free study. Differential analysis of single microdissected motor neurons and interneurons from human spinal tissue indicated a similar level of proteome coverage, and the two subpopulations of cells were readily differentiated based on single-cell label-free quantification.
format Online
Article
Text
id pubmed-8178986
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-81789862021-06-22 Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell Cong, Yongzheng Motamedchaboki, Khatereh Misal, Santosh A. Liang, Yiran Guise, Amanda J. Truong, Thy Huguet, Romain Plowey, Edward D. Zhu, Ying Lopez-Ferrer, Daniel Kelly, Ryan T. Chem Sci Chemistry We report on the combination of nanodroplet sample preparation, ultra-low-flow nanoLC, high-field asymmetric ion mobility spectrometry (FAIMS), and the latest-generation Orbitrap Eclipse Tribrid mass spectrometer for greatly improved single-cell proteome profiling. FAIMS effectively filtered out singly charged ions for more effective MS analysis of multiply charged peptides, resulting in an average of 1056 protein groups identified from single HeLa cells without MS1-level feature matching. This is 2.3 times more identifications than without FAIMS and a far greater level of proteome coverage for single mammalian cells than has been previously reported for a label-free study. Differential analysis of single microdissected motor neurons and interneurons from human spinal tissue indicated a similar level of proteome coverage, and the two subpopulations of cells were readily differentiated based on single-cell label-free quantification. The Royal Society of Chemistry 2020-11-17 /pmc/articles/PMC8178986/ /pubmed/34163866 http://dx.doi.org/10.1039/d0sc03636f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Cong, Yongzheng
Motamedchaboki, Khatereh
Misal, Santosh A.
Liang, Yiran
Guise, Amanda J.
Truong, Thy
Huguet, Romain
Plowey, Edward D.
Zhu, Ying
Lopez-Ferrer, Daniel
Kelly, Ryan T.
Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell
title Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell
title_full Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell
title_fullStr Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell
title_full_unstemmed Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell
title_short Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell
title_sort ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178986/
https://www.ncbi.nlm.nih.gov/pubmed/34163866
http://dx.doi.org/10.1039/d0sc03636f
work_keys_str_mv AT congyongzheng ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT motamedchabokikhatereh ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT misalsantosha ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT liangyiran ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT guiseamandaj ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT truongthy ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT huguetromain ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT ploweyedwardd ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT zhuying ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT lopezferrerdaniel ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell
AT kellyryant ultrasensitivesinglecellproteomicsworkflowidentifies1000proteingroupspermammaliancell