Cargando…
A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen
Redox-active ionic liquids (RAILs) are gaining attention as a material that can create a wide range of functions. We herein propose a charge-transfer (CT) RAIL by mixing two RAILs, specifically a carbazole-based ionic liquid ([CzC(4)ImC(1)][TFSI]) as a donor and a viologen-based ionic liquid ([C(4)V...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179547/ https://www.ncbi.nlm.nih.gov/pubmed/34163737 http://dx.doi.org/10.1039/d0sc06244h |
_version_ | 1783703806413897728 |
---|---|
author | Tahara, Hironobu Tanaka, Yudai Yamamoto, Shoko Yonemori, Shigeki Chan, Bun Murakami, Hiroto Sagara, Takamasa |
author_facet | Tahara, Hironobu Tanaka, Yudai Yamamoto, Shoko Yonemori, Shigeki Chan, Bun Murakami, Hiroto Sagara, Takamasa |
author_sort | Tahara, Hironobu |
collection | PubMed |
description | Redox-active ionic liquids (RAILs) are gaining attention as a material that can create a wide range of functions. We herein propose a charge-transfer (CT) RAIL by mixing two RAILs, specifically a carbazole-based ionic liquid ([CzC(4)ImC(1)][TFSI]) as a donor and a viologen-based ionic liquid ([C(4)VC(7)][TFSI](2)) as an acceptor. We investigated the effect of CT interaction on the physicochemical properties of the CT ionic liquid (CT-IL) using the results of temperature-dependent measurements of UV-vis absorption, viscosity, and ionic conductivity as well as cyclic voltammograms. We employed the Walden analysis and the Grunberg–Nissan model to elucidate the effect of the CT interaction on the viscosity and ionic conductivity. The CT interaction reduces the viscosity by reducing the electrostatic attraction between the dicationic viologen and TFSI anion. It also reduces the ionic conductivity by the CT association of the dicationic viologen and carbazole. The electrochemically reversible responses of the viologens in [C(4)VC(7)][TFSI](2) and CT-IL are consistent with the Nernstian and the interacting two-redox site models. Notably, the transport and electrochemical properties are modulated by CT interaction, leading to unique features that are not present in individual component ILs. The inclusion of CT interaction in RAILs thus provides a powerful means to expand the scope of functionalized ionic liquids. |
format | Online Article Text |
id | pubmed-8179547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81795472021-06-22 A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen Tahara, Hironobu Tanaka, Yudai Yamamoto, Shoko Yonemori, Shigeki Chan, Bun Murakami, Hiroto Sagara, Takamasa Chem Sci Chemistry Redox-active ionic liquids (RAILs) are gaining attention as a material that can create a wide range of functions. We herein propose a charge-transfer (CT) RAIL by mixing two RAILs, specifically a carbazole-based ionic liquid ([CzC(4)ImC(1)][TFSI]) as a donor and a viologen-based ionic liquid ([C(4)VC(7)][TFSI](2)) as an acceptor. We investigated the effect of CT interaction on the physicochemical properties of the CT ionic liquid (CT-IL) using the results of temperature-dependent measurements of UV-vis absorption, viscosity, and ionic conductivity as well as cyclic voltammograms. We employed the Walden analysis and the Grunberg–Nissan model to elucidate the effect of the CT interaction on the viscosity and ionic conductivity. The CT interaction reduces the viscosity by reducing the electrostatic attraction between the dicationic viologen and TFSI anion. It also reduces the ionic conductivity by the CT association of the dicationic viologen and carbazole. The electrochemically reversible responses of the viologens in [C(4)VC(7)][TFSI](2) and CT-IL are consistent with the Nernstian and the interacting two-redox site models. Notably, the transport and electrochemical properties are modulated by CT interaction, leading to unique features that are not present in individual component ILs. The inclusion of CT interaction in RAILs thus provides a powerful means to expand the scope of functionalized ionic liquids. The Royal Society of Chemistry 2021-02-18 /pmc/articles/PMC8179547/ /pubmed/34163737 http://dx.doi.org/10.1039/d0sc06244h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Tahara, Hironobu Tanaka, Yudai Yamamoto, Shoko Yonemori, Shigeki Chan, Bun Murakami, Hiroto Sagara, Takamasa A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen |
title | A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen |
title_full | A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen |
title_fullStr | A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen |
title_full_unstemmed | A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen |
title_short | A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen |
title_sort | redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179547/ https://www.ncbi.nlm.nih.gov/pubmed/34163737 http://dx.doi.org/10.1039/d0sc06244h |
work_keys_str_mv | AT taharahironobu aredoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT tanakayudai aredoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT yamamotoshoko aredoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT yonemorishigeki aredoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT chanbun aredoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT murakamihiroto aredoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT sagaratakamasa aredoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT taharahironobu redoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT tanakayudai redoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT yamamotoshoko redoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT yonemorishigeki redoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT chanbun redoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT murakamihiroto redoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen AT sagaratakamasa redoxactiveionicliquidmanifestingchargetransferinteractionbetweenaviologenandcarbazoleanditseffectontheviscosityionicconductivityandredoxprocessoftheviologen |