Cargando…
Investigating thermal stability based on the structural changes of lactase enzyme by several orthogonal methods
Thermal stability of lactase (β-galactosidase) enzyme has been studied by a variety of physico-chemical methods. β-galactosidase is the main active ingredient of medications for lactose intolerance. It is typically produced industrially by the Aspergillus oryzae filamentous fungus. Lactase was used...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182373/ https://www.ncbi.nlm.nih.gov/pubmed/34136367 http://dx.doi.org/10.1016/j.btre.2021.e00637 |
Sumario: | Thermal stability of lactase (β-galactosidase) enzyme has been studied by a variety of physico-chemical methods. β-galactosidase is the main active ingredient of medications for lactose intolerance. It is typically produced industrially by the Aspergillus oryzae filamentous fungus. Lactase was used as a model to help understand thermal stability of enzyme-type biopharmaceuticals. Enzyme activity (hydrolyzation of lactose) of β-galactosidase was determined after storing the solid enzyme substance at various temperatures. For a better understanding of the relationship between structure and activity changes we determined the mass and size of the molecules with gel electrophoresis and dynamic light scattering and detected aggregation processes. A bottom-up proteomic procedure was used to determine the primary amino acid sequence and to investigate changes in the N-glycosylation pattern of the protein. NMR and CD spectroscopic methods were used to observe changes in higher order structures and to reveal relationships between structural and functional changes. |
---|