Cargando…
CryoDRGN: Reconstruction of heterogeneous cryo-EM structures using neural networks
Cryo-EM single-particle analysis has proven powerful in determining the structures of rigid macromolecules. However, many imaged protein complexes exhibit complex conformational and compositional heterogeneity that pose a major challenge to existing 3D reconstruction methods. Here, we present cryoDR...
Autores principales: | Zhong, Ellen D., Bepler, Tristan, Berger, Bonnie, Davis, Joseph H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183613/ https://www.ncbi.nlm.nih.gov/pubmed/33542510 http://dx.doi.org/10.1038/s41592-020-01049-4 |
Ejemplares similares
-
Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN
por: Powell, Barrett M., et al.
Publicado: (2023) -
Topaz-Denoise: general deep denoising models for cryoEM and cryoET
por: Bepler, Tristan, et al.
Publicado: (2020) -
Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
por: Bepler, Tristan, et al.
Publicado: (2019) -
Conformational landscape of the yeast SAGA complex as revealed by cryo-EM
por: Vasyliuk, Diana, et al.
Publicado: (2022) -
Cryo-EM at ACA 2022
por: Subramaniam, Sriram, et al.
Publicado: (2022)