Cargando…

Sestrin2 as a gatekeeper of cellular homeostasis: Physiological effects for the regulation of hypoxia‐related diseases

Sestrin2 (SESN2) is a conserved stress‐inducible protein (also known as hypoxia‐inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Cunyao, Chen, Zhaoli, Li, Chao, Han, Tie, Liu, Hui, Wang, Xinxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184687/
https://www.ncbi.nlm.nih.gov/pubmed/33942488
http://dx.doi.org/10.1111/jcmm.16540
Descripción
Sumario:Sestrin2 (SESN2) is a conserved stress‐inducible protein (also known as hypoxia‐inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. In recent years, the determination of the regulation and signalling mechanisms of SESN2 has increased our understanding of its role in the hypoxic response. SESN2 has well‐documented roles in hypoxia‐related diseases, making it a potential target for diagnosis and treatment. This review discusses the regulatory mechanisms of SESN2 and highlights the significance of SESN2 as a biomarker and therapeutic target in hypoxia‐related diseases, such as cancer, respiratory‐related diseases, cardiovascular diseases and cerebrovascular diseases.