Cargando…

Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics

Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilhelm, Mathias, Zolg, Daniel P., Graber, Michael, Gessulat, Siegfried, Schmidt, Tobias, Schnatbaum, Karsten, Schwencke-Westphal, Celina, Seifert, Philipp, de Andrade Krätzig, Niklas, Zerweck, Johannes, Knaute, Tobias, Bräunlein, Eva, Samaras, Patroklos, Lautenbacher, Ludwig, Klaeger, Susan, Wenschuh, Holger, Rad, Roland, Delanghe, Bernard, Huhmer, Andreas, Carr, Steven A., Clauser, Karl R., Krackhardt, Angela M., Reimer, Ulf, Kuster, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184761/
https://www.ncbi.nlm.nih.gov/pubmed/34099720
http://dx.doi.org/10.1038/s41467-021-23713-9
Descripción
Sumario:Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows.