Cargando…

Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics

Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilhelm, Mathias, Zolg, Daniel P., Graber, Michael, Gessulat, Siegfried, Schmidt, Tobias, Schnatbaum, Karsten, Schwencke-Westphal, Celina, Seifert, Philipp, de Andrade Krätzig, Niklas, Zerweck, Johannes, Knaute, Tobias, Bräunlein, Eva, Samaras, Patroklos, Lautenbacher, Ludwig, Klaeger, Susan, Wenschuh, Holger, Rad, Roland, Delanghe, Bernard, Huhmer, Andreas, Carr, Steven A., Clauser, Karl R., Krackhardt, Angela M., Reimer, Ulf, Kuster, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184761/
https://www.ncbi.nlm.nih.gov/pubmed/34099720
http://dx.doi.org/10.1038/s41467-021-23713-9
_version_ 1783704645172985856
author Wilhelm, Mathias
Zolg, Daniel P.
Graber, Michael
Gessulat, Siegfried
Schmidt, Tobias
Schnatbaum, Karsten
Schwencke-Westphal, Celina
Seifert, Philipp
de Andrade Krätzig, Niklas
Zerweck, Johannes
Knaute, Tobias
Bräunlein, Eva
Samaras, Patroklos
Lautenbacher, Ludwig
Klaeger, Susan
Wenschuh, Holger
Rad, Roland
Delanghe, Bernard
Huhmer, Andreas
Carr, Steven A.
Clauser, Karl R.
Krackhardt, Angela M.
Reimer, Ulf
Kuster, Bernhard
author_facet Wilhelm, Mathias
Zolg, Daniel P.
Graber, Michael
Gessulat, Siegfried
Schmidt, Tobias
Schnatbaum, Karsten
Schwencke-Westphal, Celina
Seifert, Philipp
de Andrade Krätzig, Niklas
Zerweck, Johannes
Knaute, Tobias
Bräunlein, Eva
Samaras, Patroklos
Lautenbacher, Ludwig
Klaeger, Susan
Wenschuh, Holger
Rad, Roland
Delanghe, Bernard
Huhmer, Andreas
Carr, Steven A.
Clauser, Karl R.
Krackhardt, Angela M.
Reimer, Ulf
Kuster, Bernhard
author_sort Wilhelm, Mathias
collection PubMed
description Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows.
format Online
Article
Text
id pubmed-8184761
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81847612021-06-09 Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics Wilhelm, Mathias Zolg, Daniel P. Graber, Michael Gessulat, Siegfried Schmidt, Tobias Schnatbaum, Karsten Schwencke-Westphal, Celina Seifert, Philipp de Andrade Krätzig, Niklas Zerweck, Johannes Knaute, Tobias Bräunlein, Eva Samaras, Patroklos Lautenbacher, Ludwig Klaeger, Susan Wenschuh, Holger Rad, Roland Delanghe, Bernard Huhmer, Andreas Carr, Steven A. Clauser, Karl R. Krackhardt, Angela M. Reimer, Ulf Kuster, Bernhard Nat Commun Article Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows. Nature Publishing Group UK 2021-06-07 /pmc/articles/PMC8184761/ /pubmed/34099720 http://dx.doi.org/10.1038/s41467-021-23713-9 Text en © The Author(s) 2021, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wilhelm, Mathias
Zolg, Daniel P.
Graber, Michael
Gessulat, Siegfried
Schmidt, Tobias
Schnatbaum, Karsten
Schwencke-Westphal, Celina
Seifert, Philipp
de Andrade Krätzig, Niklas
Zerweck, Johannes
Knaute, Tobias
Bräunlein, Eva
Samaras, Patroklos
Lautenbacher, Ludwig
Klaeger, Susan
Wenschuh, Holger
Rad, Roland
Delanghe, Bernard
Huhmer, Andreas
Carr, Steven A.
Clauser, Karl R.
Krackhardt, Angela M.
Reimer, Ulf
Kuster, Bernhard
Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_full Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_fullStr Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_full_unstemmed Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_short Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
title_sort deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184761/
https://www.ncbi.nlm.nih.gov/pubmed/34099720
http://dx.doi.org/10.1038/s41467-021-23713-9
work_keys_str_mv AT wilhelmmathias deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT zolgdanielp deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT grabermichael deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT gessulatsiegfried deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT schmidttobias deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT schnatbaumkarsten deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT schwenckewestphalcelina deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT seifertphilipp deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT deandradekratzigniklas deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT zerweckjohannes deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT knautetobias deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT braunleineva deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT samaraspatroklos deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT lautenbacherludwig deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT klaegersusan deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT wenschuhholger deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT radroland deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT delanghebernard deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT huhmerandreas deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT carrstevena deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT clauserkarlr deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT krackhardtangelam deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT reimerulf deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics
AT kusterbernhard deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics