Cargando…
Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics
Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184761/ https://www.ncbi.nlm.nih.gov/pubmed/34099720 http://dx.doi.org/10.1038/s41467-021-23713-9 |
_version_ | 1783704645172985856 |
---|---|
author | Wilhelm, Mathias Zolg, Daniel P. Graber, Michael Gessulat, Siegfried Schmidt, Tobias Schnatbaum, Karsten Schwencke-Westphal, Celina Seifert, Philipp de Andrade Krätzig, Niklas Zerweck, Johannes Knaute, Tobias Bräunlein, Eva Samaras, Patroklos Lautenbacher, Ludwig Klaeger, Susan Wenschuh, Holger Rad, Roland Delanghe, Bernard Huhmer, Andreas Carr, Steven A. Clauser, Karl R. Krackhardt, Angela M. Reimer, Ulf Kuster, Bernhard |
author_facet | Wilhelm, Mathias Zolg, Daniel P. Graber, Michael Gessulat, Siegfried Schmidt, Tobias Schnatbaum, Karsten Schwencke-Westphal, Celina Seifert, Philipp de Andrade Krätzig, Niklas Zerweck, Johannes Knaute, Tobias Bräunlein, Eva Samaras, Patroklos Lautenbacher, Ludwig Klaeger, Susan Wenschuh, Holger Rad, Roland Delanghe, Bernard Huhmer, Andreas Carr, Steven A. Clauser, Karl R. Krackhardt, Angela M. Reimer, Ulf Kuster, Bernhard |
author_sort | Wilhelm, Mathias |
collection | PubMed |
description | Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows. |
format | Online Article Text |
id | pubmed-8184761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81847612021-06-09 Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics Wilhelm, Mathias Zolg, Daniel P. Graber, Michael Gessulat, Siegfried Schmidt, Tobias Schnatbaum, Karsten Schwencke-Westphal, Celina Seifert, Philipp de Andrade Krätzig, Niklas Zerweck, Johannes Knaute, Tobias Bräunlein, Eva Samaras, Patroklos Lautenbacher, Ludwig Klaeger, Susan Wenschuh, Holger Rad, Roland Delanghe, Bernard Huhmer, Andreas Carr, Steven A. Clauser, Karl R. Krackhardt, Angela M. Reimer, Ulf Kuster, Bernhard Nat Commun Article Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows. Nature Publishing Group UK 2021-06-07 /pmc/articles/PMC8184761/ /pubmed/34099720 http://dx.doi.org/10.1038/s41467-021-23713-9 Text en © The Author(s) 2021, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Wilhelm, Mathias Zolg, Daniel P. Graber, Michael Gessulat, Siegfried Schmidt, Tobias Schnatbaum, Karsten Schwencke-Westphal, Celina Seifert, Philipp de Andrade Krätzig, Niklas Zerweck, Johannes Knaute, Tobias Bräunlein, Eva Samaras, Patroklos Lautenbacher, Ludwig Klaeger, Susan Wenschuh, Holger Rad, Roland Delanghe, Bernard Huhmer, Andreas Carr, Steven A. Clauser, Karl R. Krackhardt, Angela M. Reimer, Ulf Kuster, Bernhard Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics |
title | Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics |
title_full | Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics |
title_fullStr | Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics |
title_full_unstemmed | Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics |
title_short | Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics |
title_sort | deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184761/ https://www.ncbi.nlm.nih.gov/pubmed/34099720 http://dx.doi.org/10.1038/s41467-021-23713-9 |
work_keys_str_mv | AT wilhelmmathias deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT zolgdanielp deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT grabermichael deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT gessulatsiegfried deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT schmidttobias deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT schnatbaumkarsten deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT schwenckewestphalcelina deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT seifertphilipp deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT deandradekratzigniklas deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT zerweckjohannes deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT knautetobias deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT braunleineva deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT samaraspatroklos deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT lautenbacherludwig deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT klaegersusan deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT wenschuhholger deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT radroland deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT delanghebernard deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT huhmerandreas deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT carrstevena deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT clauserkarlr deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT krackhardtangelam deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT reimerulf deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics AT kusterbernhard deeplearningboostssensitivityofmassspectrometrybasedimmunopeptidomics |