Cargando…
A Deep Learning Method for Vision Based Force Prediction of a Soft Fin Ray Gripper Using Simulation Data
Soft robotic grippers are increasingly desired in applications that involve grasping of complex and deformable objects. However, their flexible nature and non-linear dynamics makes the modelling and control difficult. Numerical techniques such as Finite Element Analysis (FEA) present an accurate way...
Autores principales: | De Barrie, Daniel, Pandya, Manjari, Pandya, Harit, Hanheide, Marc, Elgeneidy, Khaled |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186462/ https://www.ncbi.nlm.nih.gov/pubmed/34113655 http://dx.doi.org/10.3389/frobt.2021.631371 |
Ejemplares similares
-
Autonomous detection and sorting of litter using deep learning and soft robotic grippers
por: Almanzor, Elijah, et al.
Publicado: (2022) -
Beyond Soft Hands: Efficient Grasping With Non-Anthropomorphic Soft Grippers
por: Hao, Yufei, et al.
Publicado: (2021) -
Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators
por: Elgeneidy, Khaled, et al.
Publicado: (2018) -
Learning Optimal Fin-Ray Finger Design for Soft Grasping
por: Deng, Zhifeng, et al.
Publicado: (2021) -
Employing Pneumatic, Telescopic Actuators for the Development of Soft and Hybrid Robotic Grippers
por: Gerez, Lucas, et al.
Publicado: (2020)