Cargando…
The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain
Cryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome in a process requiring the RNA helicase Mtr4 and specific adaptor complexes for RNA substrate recognition. The PAXT and MTREC complexes have recently been identified as homologous exosome adaptors in human and fission ye...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187409/ https://www.ncbi.nlm.nih.gov/pubmed/34103492 http://dx.doi.org/10.1038/s41467-021-23565-3 |
_version_ | 1783705124434083840 |
---|---|
author | Dobrev, Nikolay Ahmed, Yasar Luqman Sivadas, Anusree Soni, Komal Fischer, Tamás Sinning, Irmgard |
author_facet | Dobrev, Nikolay Ahmed, Yasar Luqman Sivadas, Anusree Soni, Komal Fischer, Tamás Sinning, Irmgard |
author_sort | Dobrev, Nikolay |
collection | PubMed |
description | Cryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome in a process requiring the RNA helicase Mtr4 and specific adaptor complexes for RNA substrate recognition. The PAXT and MTREC complexes have recently been identified as homologous exosome adaptors in human and fission yeast, respectively. The eleven-subunit MTREC comprises the zinc-finger protein Red1 and the Mtr4 homologue Mtl1. Here, we use yeast two-hybrid and pull-down assays to derive a detailed interaction map. We show that Red1 bridges MTREC submodules and serves as the central scaffold. In the crystal structure of a minimal Mtl1/Red1 complex an unstructured region adjacent to the Red1 zinc-finger domain binds to both the Mtl1 KOW domain and stalk helices. This interaction extends the canonical interface seen in Mtr4-adaptor complexes. In vivo mutational analysis shows that this interface is essential for cell survival. Our results add to Mtr4 versatility and provide mechanistic insights into the MTREC complex. |
format | Online Article Text |
id | pubmed-8187409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81874092021-06-11 The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain Dobrev, Nikolay Ahmed, Yasar Luqman Sivadas, Anusree Soni, Komal Fischer, Tamás Sinning, Irmgard Nat Commun Article Cryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome in a process requiring the RNA helicase Mtr4 and specific adaptor complexes for RNA substrate recognition. The PAXT and MTREC complexes have recently been identified as homologous exosome adaptors in human and fission yeast, respectively. The eleven-subunit MTREC comprises the zinc-finger protein Red1 and the Mtr4 homologue Mtl1. Here, we use yeast two-hybrid and pull-down assays to derive a detailed interaction map. We show that Red1 bridges MTREC submodules and serves as the central scaffold. In the crystal structure of a minimal Mtl1/Red1 complex an unstructured region adjacent to the Red1 zinc-finger domain binds to both the Mtl1 KOW domain and stalk helices. This interaction extends the canonical interface seen in Mtr4-adaptor complexes. In vivo mutational analysis shows that this interface is essential for cell survival. Our results add to Mtr4 versatility and provide mechanistic insights into the MTREC complex. Nature Publishing Group UK 2021-06-08 /pmc/articles/PMC8187409/ /pubmed/34103492 http://dx.doi.org/10.1038/s41467-021-23565-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Dobrev, Nikolay Ahmed, Yasar Luqman Sivadas, Anusree Soni, Komal Fischer, Tamás Sinning, Irmgard The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain |
title | The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain |
title_full | The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain |
title_fullStr | The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain |
title_full_unstemmed | The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain |
title_short | The zinc-finger protein Red1 orchestrates MTREC submodules and binds the Mtl1 helicase arch domain |
title_sort | zinc-finger protein red1 orchestrates mtrec submodules and binds the mtl1 helicase arch domain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187409/ https://www.ncbi.nlm.nih.gov/pubmed/34103492 http://dx.doi.org/10.1038/s41467-021-23565-3 |
work_keys_str_mv | AT dobrevnikolay thezincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT ahmedyasarluqman thezincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT sivadasanusree thezincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT sonikomal thezincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT fischertamas thezincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT sinningirmgard thezincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT dobrevnikolay zincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT ahmedyasarluqman zincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT sivadasanusree zincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT sonikomal zincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT fischertamas zincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain AT sinningirmgard zincfingerproteinred1orchestratesmtrecsubmodulesandbindsthemtl1helicasearchdomain |