Cargando…
The effect of peer modelling and discussing modelled feedback principles on medical students’ feedback skills: a quasi-experimental study
BACKGROUND: Teaching is an important professional skill for physicians and providing feedback is an important part of teaching. Medical students can practice their feedback skills by giving each other peer feedback. Therefore, we developed a peer feedback training in which students observed a peer t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188784/ https://www.ncbi.nlm.nih.gov/pubmed/34103030 http://dx.doi.org/10.1186/s12909-021-02755-z |
Sumario: | BACKGROUND: Teaching is an important professional skill for physicians and providing feedback is an important part of teaching. Medical students can practice their feedback skills by giving each other peer feedback. Therefore, we developed a peer feedback training in which students observed a peer that modelled the use of good feedback principles. Students then elaborated on the modelled feedback principles through peer discussion. This combination of peer modelling and discussing the modelled feedback principles was expected to enhance emulation of the feedback principles compared to (1) only peer modelling and (2) discussing the feedback principles without previous modelling. METHODS: In a quasi-experimental study design, 141 medical students were assigned randomly to three training conditions: peer modelling plus discussion (MD), non-peer modelled example (NM) or peer modelling without discussion (M). Before and after the training, they commented on papers written by peers. These comments served as a pre- and a post-measure of peer feedback. The comments were coded into different functions and aspects of the peer feedback. Non-parametrical Kruskall-Wallis tests were used to check for pre- and post-measure between-group differences in the functions and aspects. RESULTS: Before the training, there were no significant between-group differences in feedback functions and aspects. After the training, the MD-condition gave significantly more positive peer feedback than the NM-condition. However, no other functions or aspects were significantly different between the three conditions, mainly because the within-group interquartile ranges were large. CONCLUSIONS: The large interquartile ranges suggest that students differed substantially in the effort placed into giving peer feedback. Therefore, additional incentives may be needed to motivate students to give good feedback. Teachers could emphasise the utility value of peer feedback as an important professional skill and the importance of academic altruism and professional accountability in the peer feedback process. Such incentives may convince more students to put more effort into giving peer feedback. |
---|