Cargando…

Dynamic properties of SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases studied by molecular dynamics simulations

One of the promising drug targets against COVID-19 is an RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The tertiary structures of the SARS-CoV-2 and SARS-CoV RdRps are almost the same. However, the RNA-synthesizing activity of the SARS-CoV RdRp is higher than that of the SARS-CoV-2 RdRp. We per...

Descripción completa

Detalles Bibliográficos
Autores principales: Itoh, Satoru G., Tanimoto, Shoichi, Okumura, Hisashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189741/
https://www.ncbi.nlm.nih.gov/pubmed/34127868
http://dx.doi.org/10.1016/j.cplett.2021.138819
Descripción
Sumario:One of the promising drug targets against COVID-19 is an RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The tertiary structures of the SARS-CoV-2 and SARS-CoV RdRps are almost the same. However, the RNA-synthesizing activity of the SARS-CoV RdRp is higher than that of the SARS-CoV-2 RdRp. We performed molecular dynamics simulations and found differences in their dynamic properties. In the SARS-CoV RdRp, motifs A–G, which form the active site, are up to 63% closer to each other. We also observed cooperative domain motion in the SARS-CoV RdRp. Such dynamic differences may cause the activity differences between the two RdRps.