Cargando…

Non-invasive and high-throughput interrogation of exon-specific isoform expression

Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinal...

Descripción completa

Detalles Bibliográficos
Autores principales: Truong, Dong-Jiunn Jeffery, Phlairaharn, Teeradon, Eßwein, Bianca, Gruber, Christoph, Tümen, Deniz, Baligács, Enikő, Armbrust, Niklas, Vaccaro, Francesco Leandro, Lederer, Eva-Maria, Beck, Eva Magdalena, Geilenkeuser, Julian, Göppert, Simone, Krumwiede, Luisa, Grätz, Christian, Raffl, Gerald, Schwarz, Dominic, Zirngibl, Martin, Živanić, Milica, Beyer, Maren, Körner, Johann Dietmar, Santl, Tobias, Evsyukov, Valentin, Strauß, Tabea, Schwarz, Sigrid C., Höglinger, Günter U., Heutink, Peter, Doll, Sebastian, Conrad, Marcus, Giesert, Florian, Wurst, Wolfgang, Westmeyer, Gil Gregor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189919/
https://www.ncbi.nlm.nih.gov/pubmed/34083785
http://dx.doi.org/10.1038/s41556-021-00678-x
Descripción
Sumario:Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.