Cargando…
A new QoE-based prediction model for evaluating virtual education systems with COVID-19 side effects using data mining
Today, emerging technologies such as 5G Internet of things (IoT), virtual reality and cloud-edge computing have enhanced and upgraded higher education environments in universities, colleagues and research centers. Computer-assisted learning systems with aggregating IoT applications and smart devices...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190738/ https://www.ncbi.nlm.nih.gov/pubmed/34127909 http://dx.doi.org/10.1007/s00500-021-05932-w |
Sumario: | Today, emerging technologies such as 5G Internet of things (IoT), virtual reality and cloud-edge computing have enhanced and upgraded higher education environments in universities, colleagues and research centers. Computer-assisted learning systems with aggregating IoT applications and smart devices have improved the e-learning systems by enabling remote monitoring and screening of the behavioral aspects of teaching and education scores of students. On the other side, educational data mining has improved the higher education systems by predicting and analyzing the behavioral aspects of teaching and education scores of students. Due to an unexpected and huge increase in the number of patients during coronavirus (COVID-19) pandemic, all universities, campuses, schools, research centers, many scientific collaborations and meetings have closed and forced to initiate online teaching, e-learning and virtual meeting. Due to importance of behavioral aspects of teaching and education between lecturers and students, prediction of quality of experience (QoE) in virtual education systems is a critical issue. This paper presents a new prediction model to detect technical aspects of teaching and e-learning in virtual education systems using data mining. Association rules mining and supervised techniques are applied to detect efficient QoE factors on virtual education systems. The experimental results described that the suggested prediction model meets the proper accuracy, precision and recall factors for predicting the behavioral aspects of teaching and e-learning for students in virtual education systems. |
---|