Cargando…
Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm
Deep Reinforcement Learning (DRL) enables agents to make decisions based on a well-designed reward function that suites a particular environment without any prior knowledge related to a given environment. The adaptation of hyperparameters has a great impact on the overall learning process and the le...
Autores principales: | Ashraf, Nesma M., Mostafa, Reham R., Sakr, Rasha H., Rashad, M. Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191943/ https://www.ncbi.nlm.nih.gov/pubmed/34111168 http://dx.doi.org/10.1371/journal.pone.0252754 |
Ejemplares similares
-
Heuristic hyperparameter optimization of deep learning models for genomic prediction
por: Han, Junjie, et al.
Publicado: (2021) -
The Whale Optimization Algorithm Approach for Deep Neural Networks
por: Brodzicki, Andrzej, et al.
Publicado: (2021) -
Hyperparameter Optimization for Deep Learning Models Using High Performance Computing
por: Wulff, Eric
Publicado: (2023) -
Hyperparameter Optimization for Deep Learning Models Using High Performance Computing
por: Wulff, Eric
Publicado: (2023) -
An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms
por: Vincent, Amala Mary, et al.
Publicado: (2023)