Cargando…
DNCON2_Inter: predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning
Deep learning methods that achieved great success in predicting intrachain residue-residue contacts have been applied to predict interchain contacts between proteins. However, these methods require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, which are oft...
Autores principales: | Quadir, Farhan, Roy, Raj S., Halfmann, Randal, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192766/ https://www.ncbi.nlm.nih.gov/pubmed/34112907 http://dx.doi.org/10.1038/s41598-021-91827-7 |
Ejemplares similares
-
A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers
por: Roy, Raj S, et al.
Publicado: (2022) -
DNCON2: improved protein contact prediction using two-level deep convolutional neural networks
por: Adhikari, Badri, et al.
Publicado: (2018) -
DeepComplex: A Web Server of Predicting Protein Complex Structures by Deep Learning Inter-chain Contact Prediction and Distance-Based Modelling
por: Quadir, Farhan, et al.
Publicado: (2021) -
A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks
por: Eickholt, Jesse, et al.
Publicado: (2013) -
Distance‐based reconstruction of protein quaternary structures from inter‐chain contacts
por: Soltanikazemi, Elham, et al.
Publicado: (2021)