Cargando…

H3.3 kinetics predicts chromatin compaction status of parental genomes in early embryos

BACKGROUND: After fertilization, the fusion of gametes results in the formation of totipotent zygote. During sperm-egg fusion, maternal factors participate in parental chromatin remodeling. H3.3 is a histone H3 variant that plays essential roles in mouse embryogenesis. METHODS: Here, we used transge...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Shi-meng, Liu, Xing-ping, Zhou, Li-quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194155/
https://www.ncbi.nlm.nih.gov/pubmed/34116678
http://dx.doi.org/10.1186/s12958-021-00776-3
Descripción
Sumario:BACKGROUND: After fertilization, the fusion of gametes results in the formation of totipotent zygote. During sperm-egg fusion, maternal factors participate in parental chromatin remodeling. H3.3 is a histone H3 variant that plays essential roles in mouse embryogenesis. METHODS: Here, we used transgenic early embryos expressing H3.3-eGFP or H2B-mCherry to elucidate changes of histone mobility. RESULTS: We used FRAP analysis to identify that maternally stored H3.3 has a more significant change than H2B during maternal-to-embryonic transition. We also found that H3.3 mobile fraction, which may be regulated by de novo H3.3 incorporation, reflects chromatin compaction of parental genomes in GV oocytes and early embryos. CONCLUSIONS: Our results show that H3.3 kinetics in GV oocytes and early embryos is highly correlated with chromatin compaction status of parental genomes, indicating critical roles of H3.3 in higher-order chromatin organization. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12958-021-00776-3.