Cargando…
Identifying Cancer Drivers Using DRIVE: A Feature-Based Machine Learning Model for a Pan-Cancer Assessment of Somatic Missense Mutations
SIMPLE SUMMARY: Genes dictate the grounds of life by comprising molecular bases which encode proteins. A mutation represents a gene modification that may influence the protein function. Cancer occurs when the mutation triggers uncontrolled cellular growth. Judging by the cancer expansion, mutations...
Autores principales: | Dragomir, Ionut, Akbar, Adnan, Cassidy, John W., Patel, Nirmesh, Clifford, Harry W., Contino, Gianmarco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199862/ https://www.ncbi.nlm.nih.gov/pubmed/34205004 http://dx.doi.org/10.3390/cancers13112779 |
Ejemplares similares
-
driveR: a novel method for prioritizing cancer driver genes using somatic genomics data
por: Ülgen, Ege, et al.
Publicado: (2021) -
Computational Approaches to Prioritize Cancer Driver Missense Mutations
por: Zhao, Feiyang, et al.
Publicado: (2018) -
Pan-cancer patterns of somatic copy-number alteration
por: Zack, Travis I., et al.
Publicado: (2013) -
Evaluation of Somatic Mutations in Solid Metastatic Pan-Cancer Patients
por: Roosan, Moom R., et al.
Publicado: (2021) -
Profiling lung adenocarcinoma by liquid biopsy: can one size fit all?
por: Clifford, Harry W., et al.
Publicado: (2016)