Cargando…

Reversal of Enantioselectivity in the Conjugate Addition Reaction of Cyclic Enones with the CuOTf/Azolium Catalytic System

Hydroxyamide-functionalized azolium salt (NHC•HI 4) was evaluated for dual enantioselective control in a Cu-catalyzed asymmetric conjugate addition (ACA) reaction. This investigation was based on our previously reported ACA reaction catalyzed using CuOTf combined with NHC•AgI complex 1. It was revea...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakano, Yuki, Shimizu, Satoki, Takeda, Chihiro, Sakaguchi, Satoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200092/
https://www.ncbi.nlm.nih.gov/pubmed/34199812
http://dx.doi.org/10.3390/molecules26113404
Descripción
Sumario:Hydroxyamide-functionalized azolium salt (NHC•HI 4) was evaluated for dual enantioselective control in a Cu-catalyzed asymmetric conjugate addition (ACA) reaction. This investigation was based on our previously reported ACA reaction catalyzed using CuOTf combined with NHC•AgI complex 1. It was revealed that the stereocontrol of the catalytic ACA reaction depended on the order of the addition of the substrates. Additionally, the chiral NHC ligand precursors, substrates, the relationship between the catalyst ee (ee(cat)) and product ee (ee(pro)), and halogen counter anion were completely evaluated. These results suggested that the catalytic performance of the CuOTf/4 system was comparable with that of the CuOTf/1 system. Furthermore, to gain knowledge of the Cu species generated using CuOTf and NHC ligand precursor, the reaction of CuOTf with 1 was investigated. Although obtaining the corresponding NHC•CuX species failed, the corresponding NHC•AuCl complex 11 could be synthesized by allowing 1 to react with AuCl•SMe(2).