Cargando…
Systemic NF-κB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells
Aging tissues undergo a progressive decline in regenerative potential. This decline in regenerative responsiveness has been attributed to changes in tissue-specific stem cells and their niches. In bone, aged skeletal stem/progenitor cell dysfunction is characterized by decreased frequency and impair...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202837/ https://www.ncbi.nlm.nih.gov/pubmed/34035186 http://dx.doi.org/10.18632/aging.203083 |
Sumario: | Aging tissues undergo a progressive decline in regenerative potential. This decline in regenerative responsiveness has been attributed to changes in tissue-specific stem cells and their niches. In bone, aged skeletal stem/progenitor cell dysfunction is characterized by decreased frequency and impaired osteogenic differentiation potential. This aging phenotype ultimately results in compromised regenerative responsiveness to injury. The age-associated increase of inflammatory mediators, known as inflamm-aging, has been identified as the main culprit driving skeletal stem cell dysfunction. Here, we utilized a mouse model of parabiosis to decouple aging from inflammation. Using the Nfkb1(-/-) mouse as a model of inflamm-aging, we demonstrate that a shared systemic circulation between a wild-type and Nfkb1(-/-) mouse results in an aging phenotype of the wild-type skeletal stem and progenitor cells, shown by CFU-fs and osteogenic and adipogenic differentiation assays. Our findings demonstrate that exposure to an inflammatory secretome results in a phenotype similar to the one observed in aging. |
---|