Cargando…

Improving Autonomous Robotic Navigation Using Imitation Learning

Autonomous navigation to a specified waypoint is traditionally accomplished with a layered stack of global path planning and local motion planning modules that generate feasible and obstacle-free trajectories. While these modules can be modified to meet task-specific constraints and user preferences...

Descripción completa

Detalles Bibliográficos
Autores principales: Cèsar-Tondreau, Brian, Warnell, Garrett, Stump, Ethan, Kochersberger, Kevin, Waytowich, Nicholas R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204187/
https://www.ncbi.nlm.nih.gov/pubmed/34141727
http://dx.doi.org/10.3389/frobt.2021.627730
Descripción
Sumario:Autonomous navigation to a specified waypoint is traditionally accomplished with a layered stack of global path planning and local motion planning modules that generate feasible and obstacle-free trajectories. While these modules can be modified to meet task-specific constraints and user preferences, current modification procedures require substantial effort on the part of an expert roboticist with a great deal of technical training. In this paper, we simplify this process by inserting a Machine Learning module between the global path planning and local motion planning modules of an off-the shelf navigation stack. This model can be trained with human demonstrations of the preferred navigation behavior, using a training procedure based on Behavioral Cloning, allowing for an intuitive modification of the navigation policy by non-technical users to suit task-specific constraints. We find that our approach can successfully adapt a robot’s navigation behavior to become more like that of a demonstrator. Moreover, for a fixed amount of demonstration data, we find that the proposed technique compares favorably to recent baselines with respect to both navigation success rate and trajectory similarity to the demonstrator.