Cargando…
Application of the random forest algorithm to Streptococcus pyogenes response regulator allele variation: from machine learning to evolutionary models
Group A Streptococcus (GAS) is a globally significant bacterial pathogen. The GAS genotyping gold standard characterises the nucleotide variation of emm, which encodes a surface-exposed protein that is recombinogenic and under immune-based selection pressure. Within a supervised learning methodology...
Autores principales: | Buckley, Sean J., Harvey, Robert J., Shan, Zack |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209152/ https://www.ncbi.nlm.nih.gov/pubmed/34135390 http://dx.doi.org/10.1038/s41598-021-91941-6 |
Ejemplares similares
-
Lessons Learnt From Using the Machine Learning Random Forest Algorithm to Predict Virulence in Streptococcus pyogenes
por: Buckley, Sean J., et al.
Publicado: (2021) -
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes
por: Buckley, Sean J., et al.
Publicado: (2020) -
In silico characterisation of the two-component system regulators of Streptococcus pyogenes
por: Buckley, Sean J., et al.
Publicado: (2018) -
Restricted Sequence Variation in Streptococcus pyogenes Penicillin Binding Proteins
por: Hayes, Andrew, et al.
Publicado: (2020) -
Streptococcus pyogenes balanoposthitis
por: Norimatsu, Yuta, et al.
Publicado: (2020)