Cargando…

Why Should Metformin Not Be Given in Advanced Kidney Disease? Potential Leads from Computer Simulations

[Image: see text] Metformin is considered as the go-to drug in the treatment of diabetes. However, it is either prescribed in lower doses or not prescribed at all to patients with kidney problems. To find a potential explanation for this practice, we employed atomistic-level computer simulations to...

Descripción completa

Detalles Bibliográficos
Autores principales: Kokic Males, Visnja, Požar, Martina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210427/
https://www.ncbi.nlm.nih.gov/pubmed/34151116
http://dx.doi.org/10.1021/acsomega.1c01744
Descripción
Sumario:[Image: see text] Metformin is considered as the go-to drug in the treatment of diabetes. However, it is either prescribed in lower doses or not prescribed at all to patients with kidney problems. To find a potential explanation for this practice, we employed atomistic-level computer simulations to simulate the transport of metformin through multidrug and toxin extrusion 1 (MATE1), a protein known to play a key role in the expulsion of metformin into urine. Herein, we examine the hydrogen bonding between MATE1 and one or more metformin molecules. The simulation results indicate that metformin continuously forms and breaks off hydrogen bonds with MATE1 residues. However, the mean hydrogen bond lifetimes increase for an order of magnitude when three metformin molecules are inserted instead of one. This new insight into the metformin transport process may provide the molecular foundation behind the clinical practice of not prescribing metformin to kidney disease patients.