Cargando…
Machine learning differentiates enzymatic and non-enzymatic metals in proteins
Metalloenzymes are 40% of all enzymes and can perform all seven classes of enzyme reactions. Because of the physicochemical similarities between the active sites of metalloenzymes and inactive metal binding sites, it is challenging to differentiate between them. Yet distinguishing these two classes...
Autores principales: | Feehan, Ryan, Franklin, Meghan W., Slusky, Joanna S. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211803/ https://www.ncbi.nlm.nih.gov/pubmed/34140507 http://dx.doi.org/10.1038/s41467-021-24070-3 |
Ejemplares similares
-
MAHOMES II: A webserver for predicting if a metal binding site is enzymatic
por: Feehan, Ryan, et al.
Publicado: (2023) -
Evolutionary pathways of repeat protein topology in bacterial outer membrane proteins
por: Franklin, Meghan Whitney, et al.
Publicado: (2018) -
Enzymatic and Non-Enzymatic Molecules with Antioxidant Function
por: Irato, Paola, et al.
Publicado: (2021) -
The Enzymatic and Non-Enzymatic Function of Myeloperoxidase (MPO) in Inflammatory Communication
por: Kargapolova, Yulia, et al.
Publicado: (2021) -
Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing
por: Hassan, Mohamed H., et al.
Publicado: (2021)