Cargando…
Model-based prediction of spatial gene expression via generative linear mapping
Decoding spatial transcriptomes from single-cell RNA sequencing (scRNA-seq) data has become a fundamental technique for understanding multicellular systems; however, existing computational methods lack both accuracy and biological interpretability due to their model-free frameworks. Here, we introdu...
Autores principales: | Okochi, Yasushi, Sakaguchi, Shunta, Nakae, Ken, Kondo, Takefumi, Naoki, Honda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211835/ https://www.ncbi.nlm.nih.gov/pubmed/34140477 http://dx.doi.org/10.1038/s41467-021-24014-x |
Ejemplares similares
-
SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models
por: Gao, Dalong, et al.
Publicado: (2022) -
Dynamical systems generated by linear maps
por: Dolićanin, Ćemal B, et al.
Publicado: (2014) -
Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model
por: Li, Yuzhe, et al.
Publicado: (2016) -
The Treatment of Linear and Narrow Scar after Craniotomy Using the Follicular Unit Excision
por: Okochi, Hiromi, et al.
Publicado: (2022) -
Mapping the topography of spatial gene expression with interpretable deep learning
por: Chitra, Uthsav, et al.
Publicado: (2023)