Cargando…
CaMKII Serine 280 O-GlcNAcylation Links Diabetic Hyperglycemia to Proarrhythmia
RATIONALE: Diabetic hyperglycemia is associated with cardiac dysfunction and increased arrhythmia risk, and CaMKII (calcium/calmodulin-dependent protein kinase II) function has been implicated. CaMKII activity is promoted by both oxidation and O-linked β-N-acetylglucosamine (O-GlcNAc) of known CaMKI...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221539/ https://www.ncbi.nlm.nih.gov/pubmed/33926209 http://dx.doi.org/10.1161/CIRCRESAHA.120.318402 |
Sumario: | RATIONALE: Diabetic hyperglycemia is associated with cardiac dysfunction and increased arrhythmia risk, and CaMKII (calcium/calmodulin-dependent protein kinase II) function has been implicated. CaMKII activity is promoted by both oxidation and O-linked β-N-acetylglucosamine (O-GlcNAc) of known CaMKII sites. OBJECTIVE: To investigate which posttranslational modifications occur in human diabetic hearts and how they alter electrophysiological and Ca(2+) handling properties in hyperglycemia. METHODS AND RESULTS: We assessed echocardiography, electrophysiology, Ca(2+)-handling, and protein expression in site-specific CaMKII mutant mice (O-GlcNAc-resistant S280A and oxidation-resistant MM281/2VV knock-ins, and global and cardiac-specific knockouts), in myocytes subjected to acute hyperglycemia and Ang II (angiotensin II) and mice after streptozotocin injections (to induce diabetes). Human patients with diabetes exhibit elevated CaMKII O-GlcNAcylation but not oxidation. In mice, acute hyperglycemia increased spontaneous diastolic Ca(2+) sparks and waves and arrhythmogenic action potential changes (prolongation, alternans, and delayed afterdepolarizations), all of which required CaMKII-S280 O-GlcNAcylation. Ang II effects were dependent on NOX2 (NADPH oxidase 2)-mediated CaMKII MM281/2 oxidation. Diabetes led to much greater Ca(2+) leak, RyR2 S2814 phosphorylation, electrophysiological remodeling, and increased susceptibility to in vivo arrhythmias, requiring CaMKII activation, predominantly via S280 O-GlcNAcylation and less via MM281/2 oxidation. These effects were present in myocytes at normal glucose but were exacerbated with the in vivo high circulating glucose. PLB (phospholamban) O-GlcNAcylation was increased and coincided with reduced PLB S16 phosphorylation in diabetes. Dantrolene, which reverses CaMKII-dependent proarrhythmic RyR-mediated Ca(2+) leak, also prevented hyperglycemia-induced APD prolongation and delayed afterdepolarizations. CONCLUSIONS: We found that CaMKII-S280 O-GlcNAcylation is required for increased arrhythmia susceptibility in diabetic hyperglycemia, which can be worsened by an additional Ang II-NOX2-CaMKII MM281/2 oxidation pathway. CaMKII-dependent RyR2 S2814 phosphorylation markedly increases proarrhythmic Ca(2+) leak and PLB O-GlcNAcylation may limit sarcoplasmic reticulum Ca(2+) reuptake, leading to impaired excitation-contraction coupling and arrhythmogenesis in diabetic hyperglycemia. |
---|