Cargando…

Protein Phosphatase 4 Promotes Hepatocyte Lipoapoptosis by Regulating RAC1/MLK3/JNK Pathway

Lipotoxicity-induced apoptosis, also referred to as lipoapoptosis, is one of the important initial factors promoting the progression from hepatosteatosis to nonalcoholic steatohepatitis (NASH). Saturated free fatty acids (SFAs), which are increased significantly in NASH, are directly hepatotoxic whi...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Xiuqing, Yang, Guang, Zhao, Li, Yuan, Huiping, Chen, Hao, Shen, Tao, Tang, Weiqing, Man, Yong, Ma, Jiarui, Ma, Yanyan, Dou, Lin, Li, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221892/
https://www.ncbi.nlm.nih.gov/pubmed/34221233
http://dx.doi.org/10.1155/2021/5550498
Descripción
Sumario:Lipotoxicity-induced apoptosis, also referred to as lipoapoptosis, is one of the important initial factors promoting the progression from hepatosteatosis to nonalcoholic steatohepatitis (NASH). Saturated free fatty acids (SFAs), which are increased significantly in NASH, are directly hepatotoxic which induce hepatocyte lipoapoptosis. Previously, we reported that protein phosphatase 4 (PP4) was a novel regulator of hepatic insulin resistance and lipid metabolism, but its role in hepatic lipoapoptosis remains unexplored. In this study, we found out that PP4 was upregulated in the livers of western diet-fed-induced NASH mice and SFA-treated murine primary hepatocytes and HepG2 cells. In addition, we found for the first time that suppression of PP4 decreased SFA-induced JNK activation and expression of key modulators of hepatocyte lipoapoptosis including p53-upregulated modulator of apoptosis (PUMA) and Bcl-2-interacting mediator (Bim) and reduced hepatocyte lipoapoptosis level as well both in vitro and in vivo. Further study revealed that PP4 induced JNK activation and lipoapoptosis-related protein expression by regulating the RAC1/MLK3 pathway instead of the PERK/CHOP pathway. The effects of palmitate-treated and PP4-induced lipoapoptosis pathway activation were largely abolished by RAC1 inhibition. Moreover, we identified that PP4 interacted with RAC1 and regulated GTPase activity of RAC1. In conclusion, these results demonstrated that PP4 was a novel regulator of hepatocyte lipoapoptosis and mediated hepatocyte lipoapoptosis by regulating the RAC1/MLK3/JNK signaling pathway. Our finding provided new insights into the mechanisms of this process.