Cargando…

Novel adenosine derivatives against SARS-CoV-2 RNA-dependent RNA polymerase: an in silico perspective

BACKGROUND: SARS-CoV-2 is a newly emerged human coronavirus that severely affected human health and the economy. The viral RNA-dependent RNA polymerase (RdRp) is a crucial protein target to stop virus replication. The adenosine derivative, remdesivir, was authorized for emergency use 10 months ago b...

Descripción completa

Detalles Bibliográficos
Autores principales: Sonousi, Amr, Mahran, Hanan A., Ibrahim, Ibrahim M., Ibrahim, Mohamed N., Elfiky, Abdo A., Elshemey, Wael M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222949/
https://www.ncbi.nlm.nih.gov/pubmed/34165771
http://dx.doi.org/10.1007/s43440-021-00300-9
Descripción
Sumario:BACKGROUND: SARS-CoV-2 is a newly emerged human coronavirus that severely affected human health and the economy. The viral RNA-dependent RNA polymerase (RdRp) is a crucial protein target to stop virus replication. The adenosine derivative, remdesivir, was authorized for emergency use 10 months ago by the United States FDA against COVID-19 despite its doubtful efficacy against SARS-CoV-2. METHODS: A dozen modifications based on remdesivir are tested against SARS-CoV-2 RdRp using combined molecular docking and dynamics simulation in this work. RESULTS: The results reveal a better binding affinity of 11 modifications compared to remdesivir. Compounds 8, 9, 10, and 11 show the best binding affinities against SARS-CoV-2 RdRp conformations gathered during 100 ns of the Molecular Dynamics Simulation (MDS) run (− 8.13 ± 0.45 kcal/mol, − 8.09 ± 0.67 kcal/mol, − 8.09 ± 0.64 kcal/mol, and − 8.07 ± 0.73 kcal/mol, respectively). CONCLUSIONS: The present study suggests these four compounds as potential SARS-CoV-2 RdRp inhibitors, which need to be validated experimentally. GRAPHIC ABSTRACT: [Image: see text]