Cargando…
Novel adenosine derivatives against SARS-CoV-2 RNA-dependent RNA polymerase: an in silico perspective
BACKGROUND: SARS-CoV-2 is a newly emerged human coronavirus that severely affected human health and the economy. The viral RNA-dependent RNA polymerase (RdRp) is a crucial protein target to stop virus replication. The adenosine derivative, remdesivir, was authorized for emergency use 10 months ago b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222949/ https://www.ncbi.nlm.nih.gov/pubmed/34165771 http://dx.doi.org/10.1007/s43440-021-00300-9 |
Sumario: | BACKGROUND: SARS-CoV-2 is a newly emerged human coronavirus that severely affected human health and the economy. The viral RNA-dependent RNA polymerase (RdRp) is a crucial protein target to stop virus replication. The adenosine derivative, remdesivir, was authorized for emergency use 10 months ago by the United States FDA against COVID-19 despite its doubtful efficacy against SARS-CoV-2. METHODS: A dozen modifications based on remdesivir are tested against SARS-CoV-2 RdRp using combined molecular docking and dynamics simulation in this work. RESULTS: The results reveal a better binding affinity of 11 modifications compared to remdesivir. Compounds 8, 9, 10, and 11 show the best binding affinities against SARS-CoV-2 RdRp conformations gathered during 100 ns of the Molecular Dynamics Simulation (MDS) run (− 8.13 ± 0.45 kcal/mol, − 8.09 ± 0.67 kcal/mol, − 8.09 ± 0.64 kcal/mol, and − 8.07 ± 0.73 kcal/mol, respectively). CONCLUSIONS: The present study suggests these four compounds as potential SARS-CoV-2 RdRp inhibitors, which need to be validated experimentally. GRAPHIC ABSTRACT: [Image: see text] |
---|