Cargando…
Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity
BACKGROUND: Impaired hepatic fatty acid metabolism and persistent mitochondrial dysfunction are phenomena commonly associated with liver failure. Decreased serum levels of L-carnitine, a amino acid derivative involved in fatty-acid and energy metabolism, have been reported in severe burn patients. T...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223334/ https://www.ncbi.nlm.nih.gov/pubmed/34167568 http://dx.doi.org/10.1186/s12986-021-00592-x |
_version_ | 1783711671272865792 |
---|---|
author | Li, Pengtao Xia, Zhengguo Kong, Weichang Wang, Qiong Zhao, Ziyue Arnold, Ashley Xu, Qinglian Xu, Jiegou |
author_facet | Li, Pengtao Xia, Zhengguo Kong, Weichang Wang, Qiong Zhao, Ziyue Arnold, Ashley Xu, Qinglian Xu, Jiegou |
author_sort | Li, Pengtao |
collection | PubMed |
description | BACKGROUND: Impaired hepatic fatty acid metabolism and persistent mitochondrial dysfunction are phenomena commonly associated with liver failure. Decreased serum levels of L-carnitine, a amino acid derivative involved in fatty-acid and energy metabolism, have been reported in severe burn patients. The current study aimed to evaluate the effects of L-carnitine supplementation on mitochondrial damage and other hepatocyte injuries following severe burns and the related mechanisms. METHODS: Serum carnitine and other indicators of hepatocytic injury, including AST, ALT, LDH, TG, and OCT, were analyzed in severe burn patients and healthy controls. A burn model was established on the back skin of rats; thereafter, carnitine was administered, and serum levels of the above indicators were evaluated along with Oil Red O and TUNEL staining, transmission electron microscopy, and assessment of mitochondrial membrane potential and carnitine palmitoyltransferase 1 (CPT1) activity and expression levels in the liver. HepG2 cells pretreated with the CPT1 inhibitor etomoxir were treated with or without carnitine for 24 h. Next, the above indicators were examined, and apoptotic cells were analyzed via flow cytometry. High-throughput sequencing of rat liver tissues identified several differentially expressed genes (Fabp4, Acacb, Acsm5, and Pnpla3) were confirmed using RT-qPCR. RESULTS: Substantially decreased serum levels of carnitine and increased levels of AST, ALT, LDH, and OCT were detected in severe burn patients and the burn model rats. Accumulation of TG, evident mitochondrial shrinkage, altered mitochondrial membrane potential, decreased ketogenesis, and reduced CPT1 activity were detected in the liver tissue of the burned rats. Carnitine administration recovered CPT1 activity and improved all indicators related to cellular and fatty acid metabolism and mitochondrial injury. Inhibition of CPT1 activity with etomoxir induced hepatocyte injuries similar to those in burn patients and burned rats; carnitine supplementation restored CPT1 activity and ameliorated these injuries. The expression levels of the differentially expressed genes Fabp4, Acacb, Acsm5, and Pnpla3 in the liver tissue from burned rats and etomoxir-treated hepatocytes were also restored by treatment with exogenous carnitine. CONCLUSION: Exogenous carnitine exerts protective effects against severe burn-induced cellular, fatty-acid metabolism, and mitochondrial dysfunction of hepatocytes by restoring CPT1 activity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12986-021-00592-x. |
format | Online Article Text |
id | pubmed-8223334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-82233342021-06-24 Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity Li, Pengtao Xia, Zhengguo Kong, Weichang Wang, Qiong Zhao, Ziyue Arnold, Ashley Xu, Qinglian Xu, Jiegou Nutr Metab (Lond) Research BACKGROUND: Impaired hepatic fatty acid metabolism and persistent mitochondrial dysfunction are phenomena commonly associated with liver failure. Decreased serum levels of L-carnitine, a amino acid derivative involved in fatty-acid and energy metabolism, have been reported in severe burn patients. The current study aimed to evaluate the effects of L-carnitine supplementation on mitochondrial damage and other hepatocyte injuries following severe burns and the related mechanisms. METHODS: Serum carnitine and other indicators of hepatocytic injury, including AST, ALT, LDH, TG, and OCT, were analyzed in severe burn patients and healthy controls. A burn model was established on the back skin of rats; thereafter, carnitine was administered, and serum levels of the above indicators were evaluated along with Oil Red O and TUNEL staining, transmission electron microscopy, and assessment of mitochondrial membrane potential and carnitine palmitoyltransferase 1 (CPT1) activity and expression levels in the liver. HepG2 cells pretreated with the CPT1 inhibitor etomoxir were treated with or without carnitine for 24 h. Next, the above indicators were examined, and apoptotic cells were analyzed via flow cytometry. High-throughput sequencing of rat liver tissues identified several differentially expressed genes (Fabp4, Acacb, Acsm5, and Pnpla3) were confirmed using RT-qPCR. RESULTS: Substantially decreased serum levels of carnitine and increased levels of AST, ALT, LDH, and OCT were detected in severe burn patients and the burn model rats. Accumulation of TG, evident mitochondrial shrinkage, altered mitochondrial membrane potential, decreased ketogenesis, and reduced CPT1 activity were detected in the liver tissue of the burned rats. Carnitine administration recovered CPT1 activity and improved all indicators related to cellular and fatty acid metabolism and mitochondrial injury. Inhibition of CPT1 activity with etomoxir induced hepatocyte injuries similar to those in burn patients and burned rats; carnitine supplementation restored CPT1 activity and ameliorated these injuries. The expression levels of the differentially expressed genes Fabp4, Acacb, Acsm5, and Pnpla3 in the liver tissue from burned rats and etomoxir-treated hepatocytes were also restored by treatment with exogenous carnitine. CONCLUSION: Exogenous carnitine exerts protective effects against severe burn-induced cellular, fatty-acid metabolism, and mitochondrial dysfunction of hepatocytes by restoring CPT1 activity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12986-021-00592-x. BioMed Central 2021-06-24 /pmc/articles/PMC8223334/ /pubmed/34167568 http://dx.doi.org/10.1186/s12986-021-00592-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Li, Pengtao Xia, Zhengguo Kong, Weichang Wang, Qiong Zhao, Ziyue Arnold, Ashley Xu, Qinglian Xu, Jiegou Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity |
title | Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity |
title_full | Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity |
title_fullStr | Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity |
title_full_unstemmed | Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity |
title_short | Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity |
title_sort | exogenous l-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring cpt1 activity |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223334/ https://www.ncbi.nlm.nih.gov/pubmed/34167568 http://dx.doi.org/10.1186/s12986-021-00592-x |
work_keys_str_mv | AT lipengtao exogenouslcarnitineamelioratesburninducedcellularandmitochondrialinjuryofhepatocytesbyrestoringcpt1activity AT xiazhengguo exogenouslcarnitineamelioratesburninducedcellularandmitochondrialinjuryofhepatocytesbyrestoringcpt1activity AT kongweichang exogenouslcarnitineamelioratesburninducedcellularandmitochondrialinjuryofhepatocytesbyrestoringcpt1activity AT wangqiong exogenouslcarnitineamelioratesburninducedcellularandmitochondrialinjuryofhepatocytesbyrestoringcpt1activity AT zhaoziyue exogenouslcarnitineamelioratesburninducedcellularandmitochondrialinjuryofhepatocytesbyrestoringcpt1activity AT arnoldashley exogenouslcarnitineamelioratesburninducedcellularandmitochondrialinjuryofhepatocytesbyrestoringcpt1activity AT xuqinglian exogenouslcarnitineamelioratesburninducedcellularandmitochondrialinjuryofhepatocytesbyrestoringcpt1activity AT xujiegou exogenouslcarnitineamelioratesburninducedcellularandmitochondrialinjuryofhepatocytesbyrestoringcpt1activity |