Cargando…
Total Synthesis and Anti-Inflammatory Bioactivity of (−)-Majusculoic Acid and Its Derivatives
The first total synthesis of marine natural product, (−)-majusculoic acid (1) and its seven analogs (9–15), was accomplished in three to ten steps with a yield of 3% to 28%. The strategy featured the application of the conformational controlled establishment of the trans-cyclopropane and stereochemi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223986/ https://www.ncbi.nlm.nih.gov/pubmed/34063984 http://dx.doi.org/10.3390/md19060288 |
Sumario: | The first total synthesis of marine natural product, (−)-majusculoic acid (1) and its seven analogs (9–15), was accomplished in three to ten steps with a yield of 3% to 28%. The strategy featured the application of the conformational controlled establishment of the trans-cyclopropane and stereochemical controlled bromo-olefination or olefination by Horner–Wadsworth–Emmons (HWE) reaction. The potential anti-inflammatory activity of the eight compounds (1 and 9–15) was evaluated by determining the nitric oxide (NO) production in the lipopolysaccharide (LPS)-induced mouse macrophages RAW264.7. (−)-Majusculoic acid (1), methyl majusculoate (9), and (1R,2R)-2-((3E,5Z)-6-bromonona-3,5-dien-1-yl)cyclopropane-1-carboxylic acid (12) showed significant effect with inhibition rates of 33.68%, 35.75%, and 43.01%, respectively. Moreover, they did not show cytotoxicity against RAW264.7 cells, indicating that they might be potential anti-inflammatory agents. |
---|