Cargando…
Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge
There have been significant advances regarding target detection in the autonomous vehicle context. To develop more robust systems that can overcome weather hazards as well as sensor problems, the sensor fusion approach is taking the lead in this context. Laser Imaging Detection and Ranging (LiDAR) a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227618/ https://www.ncbi.nlm.nih.gov/pubmed/34207851 http://dx.doi.org/10.3390/s21123992 |
_version_ | 1783712564982579200 |
---|---|
author | Mendez, Javier Molina, Miguel Rodriguez, Noel Cuellar, Manuel P. Morales, Diego P. |
author_facet | Mendez, Javier Molina, Miguel Rodriguez, Noel Cuellar, Manuel P. Morales, Diego P. |
author_sort | Mendez, Javier |
collection | PubMed |
description | There have been significant advances regarding target detection in the autonomous vehicle context. To develop more robust systems that can overcome weather hazards as well as sensor problems, the sensor fusion approach is taking the lead in this context. Laser Imaging Detection and Ranging (LiDAR) and camera sensors are two of the most used sensors for this task since they can accurately provide important features such as target´s depth and shape. However, most of the current state-of-the-art target detection algorithms for autonomous cars do not take into consideration the hardware limitations of the vehicle such as the reduced computing power in comparison with Cloud servers as well as the reduced latency. In this work, we propose Edge Computing Tensor Processing Unit (TPU) devices as hardware support due to their computing capabilities for machine learning algorithms as well as their reduced power consumption. We developed an accurate and small target detection model for these devices. Our proposed Multi-Level Sensor Fusion model has been optimized for the network edge, specifically for the Google Coral TPU. As a result, high accuracy results are obtained while reducing the memory consumption as well as the latency of the system using the challenging KITTI dataset. |
format | Online Article Text |
id | pubmed-8227618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82276182021-06-26 Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge Mendez, Javier Molina, Miguel Rodriguez, Noel Cuellar, Manuel P. Morales, Diego P. Sensors (Basel) Article There have been significant advances regarding target detection in the autonomous vehicle context. To develop more robust systems that can overcome weather hazards as well as sensor problems, the sensor fusion approach is taking the lead in this context. Laser Imaging Detection and Ranging (LiDAR) and camera sensors are two of the most used sensors for this task since they can accurately provide important features such as target´s depth and shape. However, most of the current state-of-the-art target detection algorithms for autonomous cars do not take into consideration the hardware limitations of the vehicle such as the reduced computing power in comparison with Cloud servers as well as the reduced latency. In this work, we propose Edge Computing Tensor Processing Unit (TPU) devices as hardware support due to their computing capabilities for machine learning algorithms as well as their reduced power consumption. We developed an accurate and small target detection model for these devices. Our proposed Multi-Level Sensor Fusion model has been optimized for the network edge, specifically for the Google Coral TPU. As a result, high accuracy results are obtained while reducing the memory consumption as well as the latency of the system using the challenging KITTI dataset. MDPI 2021-06-09 /pmc/articles/PMC8227618/ /pubmed/34207851 http://dx.doi.org/10.3390/s21123992 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mendez, Javier Molina, Miguel Rodriguez, Noel Cuellar, Manuel P. Morales, Diego P. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge |
title | Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge |
title_full | Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge |
title_fullStr | Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge |
title_full_unstemmed | Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge |
title_short | Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge |
title_sort | camera-lidar multi-level sensor fusion for target detection at the network edge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227618/ https://www.ncbi.nlm.nih.gov/pubmed/34207851 http://dx.doi.org/10.3390/s21123992 |
work_keys_str_mv | AT mendezjavier cameralidarmultilevelsensorfusionfortargetdetectionatthenetworkedge AT molinamiguel cameralidarmultilevelsensorfusionfortargetdetectionatthenetworkedge AT rodrigueznoel cameralidarmultilevelsensorfusionfortargetdetectionatthenetworkedge AT cuellarmanuelp cameralidarmultilevelsensorfusionfortargetdetectionatthenetworkedge AT moralesdiegop cameralidarmultilevelsensorfusionfortargetdetectionatthenetworkedge |