Cargando…
Integrated Multi-Class Classification and Prediction of GPCR Allosteric Modulators by Machine Learning Intelligence
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of cell surface receptors that respond to various extracellular signals. The allosteric modulation of GPCRs has emerged in recent years as a promising approach for developing target-selective therapies. Moreover, the discover...
Autores principales: | Hou, Tianling, Bian, Yuemin, McGuire, Terence, Xie, Xiang-Qun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230833/ https://www.ncbi.nlm.nih.gov/pubmed/34208096 http://dx.doi.org/10.3390/biom11060870 |
Ejemplares similares
-
Allosteric communication between protomers of dopamine Class A GPCR dimers modulates activation
por: Han, Yang, et al.
Publicado: (2009) -
Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface
por: Liu, Lei, et al.
Publicado: (2021) -
Functional Consequences of GPCR Heterodimerization: GPCRs as Allosteric Modulators
por: Haack, Karla K.V., et al.
Publicado: (2011) -
Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators
por: Olson, Keith M., et al.
Publicado: (2021) -
Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition
por: Bemister-Buffington, Joseph, et al.
Publicado: (2020)