Cargando…
Carbamazepine Reduces Sharp Wave-Ripple Complexes and Exerts Synapse-Specific Inhibition of Neurotransmission in Ex Vivo Hippocampal Slices
Higher therapeutic concentrations of the antiseizure medication carbamazepine (CBZ) are associated with cognitive side effects. Hippocampal sharp wave-ripple complexes (SPW-Rs) are proposed to participate in memory consolidation during periods of quiet and slow-wave sleep. SPW-Rs are generated in th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232098/ https://www.ncbi.nlm.nih.gov/pubmed/34203601 http://dx.doi.org/10.3390/brainsci11060787 |
Sumario: | Higher therapeutic concentrations of the antiseizure medication carbamazepine (CBZ) are associated with cognitive side effects. Hippocampal sharp wave-ripple complexes (SPW-Rs) are proposed to participate in memory consolidation during periods of quiet and slow-wave sleep. SPW-Rs are generated in the CA3 region and are regulated by multiple synaptic inputs. Here, we used a multi-electrode array to determine the effects of CBZ on SPW-Rs and synaptic transmission at multiple hippocampal synapses. Our results demonstrate that CBZ reduced SPW-Rs at therapeutically relevant concentrations (IC(50) = 37 μM) and altered the core characteristics of ripples, important for information processing and consolidation. Moreover, CBZ inhibited neurotransmission in a synapse-specific manner. CBZ inhibition was most potent at the medial-perforant-path-to-CA3 and mossy-fiber-to-CA3 synapses (IC(50)s ~ 30 and 60 μM, respectively) and least potent at medial-perforant-path-to-dentate granule cell synapses (IC(50) ~ 120 μM). These results suggest that the synapse-specific CBZ inhibition of neurotransmission reduces SPW-Rs and that the CBZ inhibition of SPW-Rs may underlie the cognitive impairments observed with therapeutic doses of CBZ. |
---|