Cargando…
Interleukin-1β Induces Tissue Factor Expression in A549 Cells via EGFR-Dependent and -Independent Mechanisms
Tissue factor (TF) plays an important role in the progression and angiogenesis of tumor cells. The present study investigated the mechanism of interleukin-1β (IL-1β)-induced TF expression in A549 lung cancer cells. Based on mRNA and protein analyses, including appropriate inhibitor experiments, IL-1...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235322/ https://www.ncbi.nlm.nih.gov/pubmed/34205482 http://dx.doi.org/10.3390/ijms22126606 |
Sumario: | Tissue factor (TF) plays an important role in the progression and angiogenesis of tumor cells. The present study investigated the mechanism of interleukin-1β (IL-1β)-induced TF expression in A549 lung cancer cells. Based on mRNA and protein analyses, including appropriate inhibitor experiments, IL-1β was shown to induce TF expression in a time-dependent manner, mediated by IL-1 receptor-dependent phosphorylation of the mitogen-activated protein kinases (MAPK) p38, p42/44 and c-jun N-terminal kinase (JNK), as well as the Src kinase and the epidermal growth factor receptor (EGFR). Thereby, inhibition of EGFR transactivation by the Src inhibitor PP1 or direct EGFR inhibition by the EGFR tyrosine kinase inhibitor (TKI) erlotinib led to a reduction of IL-1β-induced TF expression and to a suppression of p42/44 MAPK and EGFR activation, while IL-1β-induced p38 MAPK and JNK activation remained unchanged. A knockdown of EGFR by siRNA was associated with decreased IL-1β-mediated p42/44 MAPK activation, which was no longer inhibitable by erlotinib. Concentration-dependent inhibition of IL-1β-induced TF expression was also observed in the presence of gefitinib and afatinib, two other EGFR TKIs. In summary, our results suggest that IL-1β leads to increased TF formation in lung cancer cells via both Src/EGFR/p42/44 MAPK-dependent and EGFR-independent signaling pathways, with the latter mediated via p38 MAPK and JNK. |
---|