Cargando…
Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-α
Mitotane is the cornerstone of medical treatment of adrenocortical carcinoma. Estrogenic-like side effects frequently occur in patients, and previous studies explored the chemical nature of the interaction between estrogen receptor-α (ER-α) and toxic compounds, including the DDD derivatives. We used...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235434/ https://www.ncbi.nlm.nih.gov/pubmed/34208714 http://dx.doi.org/10.3390/biomedicines9060681 |
Sumario: | Mitotane is the cornerstone of medical treatment of adrenocortical carcinoma. Estrogenic-like side effects frequently occur in patients, and previous studies explored the chemical nature of the interaction between estrogen receptor-α (ER-α) and toxic compounds, including the DDD derivatives. We used molecular docking and molecular dynamics (MD) simulations to explore the possible interaction between mitotane and the ER-α receptor and the induced conformational changes. The ER-α expressing MCF-7 cells were exposed to mitotane with/without tamoxifen, and the cell viability/proliferation was evaluated by MTT assay and direct count. The transient ER-α silencing was performed using two ER-α siRNA (50 nM) and verified by Western blot. MDA-MB-231 cells were used as a negative control. Mitotane showed a similar docking configuration to 17β-estradiol and bisphenol A (BPA) and a significant binding affinity to ER-α. MD simulations showed that mitotane preserves the active conformation of ER-α more than both BPA and Bisphenol C, classifying it as an agonist. Exposure of MCF-7 cells to mitotane led to the concentration-dependent increase of cell viability and proliferation, which was reduced in the presence of tamoxifen and nullified by the transient ER-α knock-down. Integrating bioinformatics approaches with cell biology and pharmacological methods, we demonstrated that mitotane directly binds and activates ER-α. |
---|