Cargando…

Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-α

Mitotane is the cornerstone of medical treatment of adrenocortical carcinoma. Estrogenic-like side effects frequently occur in patients, and previous studies explored the chemical nature of the interaction between estrogen receptor-α (ER-α) and toxic compounds, including the DDD derivatives. We used...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossini, Elisa, Giacopuzzi, Edoardo, Gangemi, Fabrizio, Tamburello, Mariangela, Cosentini, Deborah, Abate, Andrea, Laganà, Marta, Berruti, Alfredo, Grisanti, Salvatore, Sigala, Sandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235434/
https://www.ncbi.nlm.nih.gov/pubmed/34208714
http://dx.doi.org/10.3390/biomedicines9060681
Descripción
Sumario:Mitotane is the cornerstone of medical treatment of adrenocortical carcinoma. Estrogenic-like side effects frequently occur in patients, and previous studies explored the chemical nature of the interaction between estrogen receptor-α (ER-α) and toxic compounds, including the DDD derivatives. We used molecular docking and molecular dynamics (MD) simulations to explore the possible interaction between mitotane and the ER-α receptor and the induced conformational changes. The ER-α expressing MCF-7 cells were exposed to mitotane with/without tamoxifen, and the cell viability/proliferation was evaluated by MTT assay and direct count. The transient ER-α silencing was performed using two ER-α siRNA (50 nM) and verified by Western blot. MDA-MB-231 cells were used as a negative control. Mitotane showed a similar docking configuration to 17β-estradiol and bisphenol A (BPA) and a significant binding affinity to ER-α. MD simulations showed that mitotane preserves the active conformation of ER-α more than both BPA and Bisphenol C, classifying it as an agonist. Exposure of MCF-7 cells to mitotane led to the concentration-dependent increase of cell viability and proliferation, which was reduced in the presence of tamoxifen and nullified by the transient ER-α knock-down. Integrating bioinformatics approaches with cell biology and pharmacological methods, we demonstrated that mitotane directly binds and activates ER-α.