Cargando…

A disproportionate impact of G9a methyltransferase deficiency on the X chromosome

G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Szanto, Attila, Aguilar, Rodrigo, Kesner, Barry, Blum, Roy, Wang, Danni, Cifuentes-Rojas, Catherine, del Rosario, Brian C., Kis-Toth, Katalin, Lee, Jeannie T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247598/
https://www.ncbi.nlm.nih.gov/pubmed/34168040
http://dx.doi.org/10.1101/gad.337592.120
_version_ 1783716550480494592
author Szanto, Attila
Aguilar, Rodrigo
Kesner, Barry
Blum, Roy
Wang, Danni
Cifuentes-Rojas, Catherine
del Rosario, Brian C.
Kis-Toth, Katalin
Lee, Jeannie T.
author_facet Szanto, Attila
Aguilar, Rodrigo
Kesner, Barry
Blum, Roy
Wang, Danni
Cifuentes-Rojas, Catherine
del Rosario, Brian C.
Kis-Toth, Katalin
Lee, Jeannie T.
author_sort Szanto, Attila
collection PubMed
description G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis. Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI.
format Online
Article
Text
id pubmed-8247598
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-82475982022-01-01 A disproportionate impact of G9a methyltransferase deficiency on the X chromosome Szanto, Attila Aguilar, Rodrigo Kesner, Barry Blum, Roy Wang, Danni Cifuentes-Rojas, Catherine del Rosario, Brian C. Kis-Toth, Katalin Lee, Jeannie T. Genes Dev Research Paper G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis. Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI. Cold Spring Harbor Laboratory Press 2021-07-01 /pmc/articles/PMC8247598/ /pubmed/34168040 http://dx.doi.org/10.1101/gad.337592.120 Text en © 2021 Szanto et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Research Paper
Szanto, Attila
Aguilar, Rodrigo
Kesner, Barry
Blum, Roy
Wang, Danni
Cifuentes-Rojas, Catherine
del Rosario, Brian C.
Kis-Toth, Katalin
Lee, Jeannie T.
A disproportionate impact of G9a methyltransferase deficiency on the X chromosome
title A disproportionate impact of G9a methyltransferase deficiency on the X chromosome
title_full A disproportionate impact of G9a methyltransferase deficiency on the X chromosome
title_fullStr A disproportionate impact of G9a methyltransferase deficiency on the X chromosome
title_full_unstemmed A disproportionate impact of G9a methyltransferase deficiency on the X chromosome
title_short A disproportionate impact of G9a methyltransferase deficiency on the X chromosome
title_sort disproportionate impact of g9a methyltransferase deficiency on the x chromosome
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247598/
https://www.ncbi.nlm.nih.gov/pubmed/34168040
http://dx.doi.org/10.1101/gad.337592.120
work_keys_str_mv AT szantoattila adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT aguilarrodrigo adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT kesnerbarry adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT blumroy adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT wangdanni adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT cifuentesrojascatherine adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT delrosariobrianc adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT kistothkatalin adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT leejeanniet adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT szantoattila disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT aguilarrodrigo disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT kesnerbarry disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT blumroy disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT wangdanni disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT cifuentesrojascatherine disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT delrosariobrianc disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT kistothkatalin disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome
AT leejeanniet disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome