Cargando…
A disproportionate impact of G9a methyltransferase deficiency on the X chromosome
G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific fun...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247598/ https://www.ncbi.nlm.nih.gov/pubmed/34168040 http://dx.doi.org/10.1101/gad.337592.120 |
_version_ | 1783716550480494592 |
---|---|
author | Szanto, Attila Aguilar, Rodrigo Kesner, Barry Blum, Roy Wang, Danni Cifuentes-Rojas, Catherine del Rosario, Brian C. Kis-Toth, Katalin Lee, Jeannie T. |
author_facet | Szanto, Attila Aguilar, Rodrigo Kesner, Barry Blum, Roy Wang, Danni Cifuentes-Rojas, Catherine del Rosario, Brian C. Kis-Toth, Katalin Lee, Jeannie T. |
author_sort | Szanto, Attila |
collection | PubMed |
description | G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis. Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI. |
format | Online Article Text |
id | pubmed-8247598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-82475982022-01-01 A disproportionate impact of G9a methyltransferase deficiency on the X chromosome Szanto, Attila Aguilar, Rodrigo Kesner, Barry Blum, Roy Wang, Danni Cifuentes-Rojas, Catherine del Rosario, Brian C. Kis-Toth, Katalin Lee, Jeannie T. Genes Dev Research Paper G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis. Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI. Cold Spring Harbor Laboratory Press 2021-07-01 /pmc/articles/PMC8247598/ /pubmed/34168040 http://dx.doi.org/10.1101/gad.337592.120 Text en © 2021 Szanto et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Research Paper Szanto, Attila Aguilar, Rodrigo Kesner, Barry Blum, Roy Wang, Danni Cifuentes-Rojas, Catherine del Rosario, Brian C. Kis-Toth, Katalin Lee, Jeannie T. A disproportionate impact of G9a methyltransferase deficiency on the X chromosome |
title | A disproportionate impact of G9a methyltransferase deficiency on the X chromosome |
title_full | A disproportionate impact of G9a methyltransferase deficiency on the X chromosome |
title_fullStr | A disproportionate impact of G9a methyltransferase deficiency on the X chromosome |
title_full_unstemmed | A disproportionate impact of G9a methyltransferase deficiency on the X chromosome |
title_short | A disproportionate impact of G9a methyltransferase deficiency on the X chromosome |
title_sort | disproportionate impact of g9a methyltransferase deficiency on the x chromosome |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247598/ https://www.ncbi.nlm.nih.gov/pubmed/34168040 http://dx.doi.org/10.1101/gad.337592.120 |
work_keys_str_mv | AT szantoattila adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT aguilarrodrigo adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT kesnerbarry adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT blumroy adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT wangdanni adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT cifuentesrojascatherine adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT delrosariobrianc adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT kistothkatalin adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT leejeanniet adisproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT szantoattila disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT aguilarrodrigo disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT kesnerbarry disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT blumroy disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT wangdanni disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT cifuentesrojascatherine disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT delrosariobrianc disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT kistothkatalin disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome AT leejeanniet disproportionateimpactofg9amethyltransferasedeficiencyonthexchromosome |