Cargando…
Cryptotanshinone Prevents the Binding of S6K1 to mTOR/Raptor Leading to the Suppression of mTORC1-S6K1 Signaling Activity and Neoplastic Cell Transformation
Cryptotanshinone is known for its inhibitory activity against tumorigenesis in various human cancer cells. However, exact mechanisms underlying the anticancer effects of cryptotanshinone are not fully elucidated. Here, we propose a plausible molecular mechanism, wherein cryptotanshinone represses ra...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Cancer Prevention
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249204/ https://www.ncbi.nlm.nih.gov/pubmed/34258253 http://dx.doi.org/10.15430/JCP.2021.26.2.145 |
Sumario: | Cryptotanshinone is known for its inhibitory activity against tumorigenesis in various human cancer cells. However, exact mechanisms underlying the anticancer effects of cryptotanshinone are not fully elucidated. Here, we propose a plausible molecular mechanism, wherein cryptotanshinone represses rapamycin-sensitive mTORC1/S6K1 mediated cancer cell growth and cell transformation. We investigated the various effects of cryptotanshinone on the mTORC1/S6K1 axis, which is associated with the regulation of cell growth in response to nutritional and growth factor signals. We found that cryptotanshinone specifically inhibited the mTORC1-mediated phosphorylation of S6K1, which consequently suppressed the clonogenicity of SK-Hep1 cells and the neoplastic transformation of JB6 Cl41 cells induced by insulin-like growth factor-1. Finally, we observed that cryptotanshinone prevented S6K1 from binding to the Raptor/mTOR complex, rather than regulating mTOR and its upstream pathway. Overall, our findings provide a novel mechanism underlying anti-cancer effects cryptotanshinone targeting mTORC1 signaling, contributing to the development of anticancer agents involving metabolic cancer treatment. |
---|