Cargando…

NAD(P)HX epimerase downregulation promotes tumor progression through ROS/HIF‐1α signaling in hepatocellular carcinoma

Reactive oxygen species (ROS) derived from aberrant tumor metabolism could contribute to tumor invasion and metastasis. NAD(P)HX Epimerase (NAXE), an epimerase that allows the repair of damaged forms of antioxidant NADPH, is a potential cellular ROS scavenger and its role in tumor development is sti...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Bo, Yu, Lei, Xu, Cong, Li, Yi‐Ming, Zhao, Yan‐Rong, Cao, Mo‐Mo, Yang, Lian‐Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253267/
https://www.ncbi.nlm.nih.gov/pubmed/33932069
http://dx.doi.org/10.1111/cas.14925
Descripción
Sumario:Reactive oxygen species (ROS) derived from aberrant tumor metabolism could contribute to tumor invasion and metastasis. NAD(P)HX Epimerase (NAXE), an epimerase that allows the repair of damaged forms of antioxidant NADPH, is a potential cellular ROS scavenger and its role in tumor development is still elusive. Here, we found that NAXE is significantly downregulated in hepatocellular carcinoma (HCC) tissues and cell lines. NAXE downregulation is associated with poor clinicopathological characteristics and is an independent risk factor for overall and disease‐free survival of HCC patients after liver resection. In addition, low NAXE expression could identify worse prognosis of HCC patients before vascular invasion or in early stages of disease. In particularly, low NAXE expression in HCC is markedly associated with microvascular invasion (MVI) and its combination with MVI predicts poorer prognosis of HCC patients after liver resection. Furthermore, in vitro and in vivo experiments both showed that knockdown of NAXE expression in HCC cells promoted migration, invasion, and metastasis by inducing epithelial‐mesenchymal transition (EMT), whereas NAXE overexpression causes the opposite effects. Mechanistically, low NAXE expression reduced NADPH levels and further caused ROS level increase and hypoxia‐inducible factor‐1α (HIF‐1α) activation, thereby promoting invasion and metastasis of HCC by facilitating EMT. What is more, the tumor‐promoting effect of NAXE knockdown in HCC xenograft can be abolished by giving mice N‐acetyl‐l‐cysteine (NAC) in drinking water. Taken together, our findings uncovered a tumor suppressor role for NAXE in HCC by scavenging excessive ROS and inhibiting tumor‐promoting signaling pathways, suggesting a new strategy for HCC therapy by targeting redox signaling.