Cargando…
A Bayesian inference transcription factor activity model for the analysis of single-cell transcriptomes
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful experimental approach to study cellular heterogeneity. One of the challenges in scRNA-seq data analysis is integrating different types of biological data to consistently recognize discrete biological functions and regulatory mechanisms...
Autores principales: | Gao, Shang, Dai, Yang, Rehman, Jalees |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256867/ https://www.ncbi.nlm.nih.gov/pubmed/34193535 http://dx.doi.org/10.1101/gr.265595.120 |
Ejemplares similares
-
Detecting critical transition signals from single-cell transcriptomes to infer lineage-determining transcription factors
por: Yang, Xinan H, et al.
Publicado: (2022) -
Stochastic Variational Inference for Bayesian Phylogenetics: A Case of CAT Model
por: Dang, Tung, et al.
Publicado: (2019) -
Detecting Episodic Evolution through Bayesian Inference of Molecular Clock Models
por: Tay, John H, et al.
Publicado: (2023) -
Inferring Human Immunodeficiency Virus 1 Proviral Integration Dates With Bayesian Inference
por: Jones, Bradley R, et al.
Publicado: (2023) -
Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites
por: Jajamovich, Guido H., et al.
Publicado: (2011)