Cargando…
An Early Detection Circuit for Endurance Enhancement of Backfilled Contact Resistive Random Access Memory Array
As one of the most promising embedded non-volatile storage solutions for advanced CMOS modules, resistive random access memory’s (RRAM) applications depend highly on its cyclability. Through detailed analysis, links have been found between noise types, filament configurations and the occurrence of r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257814/ https://www.ncbi.nlm.nih.gov/pubmed/34224012 http://dx.doi.org/10.1186/s11671-021-03569-0 |
Sumario: | As one of the most promising embedded non-volatile storage solutions for advanced CMOS modules, resistive random access memory’s (RRAM) applications depend highly on its cyclability. Through detailed analysis, links have been found between noise types, filament configurations and the occurrence of reset failure during cycling test. In addition, a recovery treatment is demonstrated to restore the cyclability of RRAM. An early detection circuit for vulnerable cells in an array is also proposed for further improving the overall endurance of an RRAM array. Lifetime of RRAM can be extended to over 10 k cycles without fail bits in an array. |
---|